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Abstract. Using Lemke’s scheme, we give a complementary pivot algorithm for computing an
equilibrium for Arrow-Debreu markets under separable, piecewise-linear concave (SPLC) utilities.
Despite the polynomial parity argument on directed graphs (PPAD) completeness of this case, ex-
periments indicate that our algorithm is practical-—on randomly generated instances, the number of
iterations it needs is linear in the total number of segments (i.e., pieces) in all the utility functions
specified in the input. Our paper settles a number of open problems: (1) Eaves (1976) gave an LCP
formulation and a Lemke-type algorithm for the linear Arrow—Debreu model. We generalize both to
the SPLC case, hence settling the relevant part of his open problem. (2) Our path following algorithm
for SPLC markets, together with a result of Todd (1976), gives a direct proof of membership of such
markets in PPAD and settles a question of Vazirani and Yannakakis (2011). (3) We settle a question
of Devanur and Kannan (2008) of obtaining a “systematic way of finding equilibrium instead of the
brute-force way” for the separable case and we obtain a strongly polynomial algorithm if the number
of goods or agents is constant. (4) We give a combinatorial way of interpreting Eaves’ algorithm for
the linear case, hence answering Eaves’ question (1976), “That the algorithm can be interpreted as
a ‘global market adjustment mechanism’ might be interesting to explore.”
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1. Introduction. The study of computability of market equilibria started twelve
years ago in theoretical computer science, and once polynomial time algorithms were
found for markets under linear utility functions [15, 16, 34, 27, 33, 63, 46, 60, 18],
interest shifted to more general utility functions. In economics, it is customary to
assume that utility functions are concave, since they capture the important condition
of decreasing marginal utilities.! Since we are studying computability in a finite pre-
cision model of computation, we need to restrict attention to piecewise-linear concave
(PLC) utility functions; clearly, by making the pieces fine enough, we can obtain a
good approximation to the original utility functions.

Within the class of PLC utilities, it is important to distinguish between the sep-
arable and nonseparable cases. As detailed in section 1.1, whereas the former always
admit rational equilibria, if all parameters of the market are rational numbers, the
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IFurthermore, such utilities introduce convexity into the problem, which is a natural condition
without which even fixed point theorems are not applicable. Additionally, convexity is crucial for
designing algorithms for the problem.
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latter may have only irrational equilibria and are difficult to deal with. For these rea-
sons, understanding the complexity of markets under separable PLC (SPLC) utility
functions became the next major challenge. This long-standing open question was
settled in [5, 7, 59], showing that the problem is polynomial parity argument on di-
rected graphs (PPAD) complete for both Fisher and Arrow—Debreu market models,
where PPAD is the class defined by Papadimitriou [47].

As a result, under the assumption P # PPAD, a polynomial time algorithm for
this case is not possible. On the other hand, efficiently computing market equilibria is
of practical importance (e.g., see [22, 55]), and its computability had been the subject
of intense work in economics as well [4, 21, 23, 25, 41, 53]. Our main result is a
complementary pivot algorithm for computing an equilibrium in an Arrow—Debreu
market under SPLC utility functions. Experimental results on randomly generated
instances suggest that our algorithm will be fast in practice.

Starting with the (pivoting-based) simplex algorithm for linear programming [12],
by now several prominent algorithms exhibiting the following phenomena are known:
they perform well in practice even though their worst case behavior is exponential;
the latter is exhibited via intricately doctored up instances that are designed to make
the algorithm perform poorly, e.g., the Klee-Minty example for simplex [36]. Another
algorithm exhibiting this phenomenon is the classical Lemke—Howson algorithm for
computing a Nash equilibrium of a 2-person bimatrix game, which will henceforth be
called 2-Nash [39, 49, 9]; this is also a complementary pivot algorithm. We expect our
algorithm to also be exponential in the worst case, and we leave the open problem of
finding such a family of instances.

In addition to being practical, the Lemke-Howson algorithm has yielded deep
structural properties of 2-Nash equilibria, such as oddness of the number of equilibria
as well as index, degree, and stability [28, 61, 54]. It also motivated the definition of
the complexity class PPAD [47] as described in the following quote from [59]:

“The definition of the class PPAD was designed to capture problems
that allow for path following algorithms, in the style of the algorithms
of Lemke—Howson [39] and Scarf [51]. Our result, showing mem-
bership in PPAD for both market models under separable, piecewise-
linear, concave utility functions, establishes the existence of such path
following algorithms for finding equilibria for these market models;
however, it does so indirectly, by appealing to the characterization
of PPAD given in [24]. It will be interesting to obtain natural, di-
rect algorithms for this task (hence leading to a more direct proof of
membership in PPAD), which may be useful for computing equilibria
in practice.”

The starting point of our work was the open problem described in this quote. Our
algorithm is a path following algorithm and yields, together with Todd’s result [57], a
direct proof of membership of the problem in PPAD. We build on the work of Eaves
[19], who obtained a path following algorithm for Arrow—Debreu markets under linear
utilities, using Lemke’s algorithm.

Both Lemke-Howson and Lemke’s algorithms are complementary pivot algo-
rithms; however, their mode of operation has some basic differences. The former
requires a starting dummy solution, while the latter constructs a starting solution by
introducing an extra dimension; see section 2. Also, in Lemke’s algorithm, all the
complementarity conditions are satisfied on the followed path, whereas in the Lemke—-
Howson algorithm, all but one condition are satisfied on the path. Lemke’s algorithm
is useful for solving a broader class of problems, including 2-Nash [38, 10, 11, 40].
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We note that whereas several complementary pivot algorithms have been given
for Nash equilibria after the work of Lemke and Howson [38, 58, 30, 37, 62], no such
algorithms were obtained for market equilibria following Eaves’ work. In the next
section, we will attempt to give a reason for this.

1.1. The importance of rationality. A complementary pivot algorithm is
possible for a problem only if it exhibits rationality, i.e., if all parameters are set to
rational numbers, the solution must be rational.

Eaves ends his 1975 report [19] with the following sentence:

“Also under study are extensions of the overall method to include
piecewise linear concave utilities, production, etc., if successful, this
avenue could prove important in real economic modeling.”

However, in his 1976 journal paper [20], he drops this sentence and instead adds
“ .. now let us suppose that each trader has a piecewise linear concave
utility function in lieu of a linear one. We asked the same question,
giwen rational data, does there exist a rational equilibrium? Andreu
Mas-Colell (personal communication, 1975) generated the following
3-trader and 2-good example to demonstrate the negative.”

He goes on to state an example of a market with Leontief utilities that has only
irrational equilibria and concludes

“Consequently, one can conclude that Lemke’s algorithm cannot be
used to solve this class of exchange problems.”

One can surmise that Eaves did not consider the case of SPLC markets. Moreover,
rationality of equilibria for this case was established only in 2009—independently in
[14] and [59]. Indeed, rationality had played a crucial role in his own work on the linear
case, since rationality is essential for obtaining an LCP formulation for a problem.

“Stymied in an effort to compute an equilibrium of the linear pure ex-
change model using Lemke’s algorithm, the author approached David
Gale with the following question. If W and U are rational, does there
exist a rational equilibrium? The success of the present paper rests
upon the argument given in Gale (private communication 1974 ) which
supplied an affirmative answer ....”

1.2. Our results. As stated above, our main result is a Lemke-type algorithm
for SPLC Arrow—Debreu markets, hence solving the relevant subcase of the question
posed by Eaves [19]. At a technical level, this involves two main ideas: the first is
to derive an LCP formulation for the given problem, and the second is to prove that
the polyhedron associated with the augmented LCP has no secondary rays. For the
second part, we need to assume that the SPLC market satisfies strong connectivity—
this is among the weakest known conditions for existence of a market equilibrium (see
section 3.2). Without imposing any condition, an SPLC market may not admit an
equilibrium, and determining if it has one is NP-complete [59].

We note that a deficiency of Lemke’s algorithm is that in general it does not
guarantee a solution: this happens if the path starting with the primary ray ends in a
secondary ray; see sections 2 and 5. For several classes of LCPs it is known that their
polyhedra do not have secondary rays, and hence Lemke’s algorithm is guaranteed to
terminate in a solution [10]. However, our LCP does not lie in any of these classes
[1], hence necessitating a separate proof of this fact.

Our algorithm yields several additional results analogous to those yielded by the
Lemke-Howson algorithm. First, together with a result of Todd [57], it yields a path
following algorithm for SPLC markets and therefore a direct proof of membership of
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this case in PPAD, hence settling the open problem of [59]. Second, it yields the first
elementary proof of existence of equilibrium for SPLC markets, i.e., without using
fixed point theorems. The best known example of an elementary proof of existence is
Lemke and Howson’s proof for existence of an equilibrium for 2-Nash, which follows
from their algorithm [39]. Scarf has used their algorithm to derive other elementary
proofs, e.g., for showing that balanced games have a nonempty core [50, 52].

Third, it enables us to prove that SPLC markets have an odd number of equilibria
(up to scaling), assuming nondegeneracy, and we believe it should yield other insights
as well; see section 10. In the past, economists have considered the issue of oddness of
equilibria for regular markets, i.e., markets whose demand functions are continuously
differentiable. Debreu [13] showed that such markets have a finite number of equilibria
and then using index theorems, Dierker [17] showed that the number of equilibria is
odd. We note that in general, in an SPLC market an agent can have multiple optimal
bundles, hence these markets don’t even have a well-defined demand function and are
not regular.

At this point, it is natural to ask whether the pivoting steps of our algorithm
have an interpretation in the market itself. Indeed, this question was asked by Eaves
[20] as well, “That the algorithm can be interpreted as a ‘global market adjustment
mechanism’ might be interesting to explore.” We give a combinatorial way of inter-
preting Eaves’ algorithm for the linear case. We note that it is quite different from
the combinatorial interpretation of Garg et al.’s algorithm, which is based on the
Lemke-Howson approach, for the linear case [26].

For SPLC markets, Devanur and Kannan [14] gave a polynomial time algorithm
to compute an equilibrium when the number of goods or agents is a constant. Their
algorithm resorts to an exhaustive search of all possible configurations of allocations,
and they leave the question of obtaining a “systematic way of finding equilibrium
instead of the brute-force way.” We settle this question and we improve their running
time to strongly polynomial.

This is achieved by showing that if the number of goods or agents is a constant,
say ¢, then the number of vertices (of the polyhedron) on the path starting with
the primary ray is polynomially bound. Of course, ¢ occurs in the exponent of this
polynomial, i.e., it is n©(©). However unlike their algorithm, which explores all of
the polynomially bounded (with ¢ in the exponent) configurations on each input, our
algorithm does not do exhaustive search and will terminate very quickly on typical
inputs.

2. The linear complementarity problem and Lemke’s algorithm. Given
an n X n matrix M, and a vector q, the linear complementarity problem? asks for a
vector y satisfying the following conditions:?

(2.1) My<gq, >0, and y-(¢q—My)=0.

The problem is interesting only when q # 0, since otherwise y = 0 is a trivial
solution. Let us introduce slack variables v to obtain the equivalent formulation:

(2.2) My+v=q, y>0, ©v>0, and y-v=0.

The reason for imposing nonnegativity on the slack variables is that the first
condition in (2.1) implies ¢ — My > 0. Let P be the polyhedron in 2n-dimensional

2We refer the reader to [10] for a comprehensive treatment of notions presented in this section.
3The standard way of formulating an LCP is My > —q, y > 0, and y - (My + q) = 0. However,
the LCP we construct in section 4 is more amenable to the form given in (2.1).
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space defined by the first three conditions; we will assume that P is nondegenerate.*
Under this condition, any solution to (2.2) will be a vertex of P, since it must satisfy
2n equalities. Note that the set of solutions may be disconnected.

An ingenious idea of Lemke was to introduce a new variable and consider the
system, which is called the augmented LCP:

(2.3) My+v—z1=q, y>0, ©v>0, 2z>0, and y-v=0.

Let P’ be the polyhedron defined by the first four conditions of the augmented
LCP. Even though P’ is defined in a (2n + 1)-dimensional space, because of the first n
equalities, the dimension of the polyhedron is (n + 1). Again we will assume that P’
is nondegenerate, i.e., for any 0 < d < (n+ 1)-dimensional face of P’ exactly n+1—d
of conditions {y; > 0,v; > 0, Vi € {1,...,n}; z > 0} hold with equality. Since any
solution to (2.3) must still satisfy 2n equalities, the set of solutions, say S, will be a
subset of the 1-skeleton of P’, i.e., it will consist of edges (1-dimensional face) and
vertices (O-dimensional face) of P’. Any solution to the original system must satisfy
the additional condition z = 0 and hence will be a vertex of P’.

Now S turns out to have some nice properties. Any point of S is fully labeled in
the sense that for each i, y; = 0 or v; = 0.> We will say that a point of S has double
label i if y; = 0 and v; = 0 are both satisfied at this point. Clearly, such a point
will be a vertex of P” and it will have only one double label. Since there are exactly
two ways of relaxing this double label, this vertex must have exactly two edges of S
incident at it. Clearly, a solution to the original system (i.e., satisfying z = 0) will
be a vertex of P’ that does not have a double label. On relaxing z = 0, we get the
unique edge of S incident at this vertex.

As a result of these observations, it follows that S consists of paths and cycles.
Of these paths, Lemke’s algorithm explores a special one. An unbounded edge of S,
such that the vertex (Y«,vs,2s) of P’ it is incident on has z, > 0, is called a ray,
which can be formally represented by

Yx Yo
Ve | 0| vo such that § >0 3,
Zx Zo

where (Yo, Vo, 20) # 0 is a solution of the above LCP with ¢ = 0. Among the rays,
one is special—the one on which y = 0. This is called the primary ray and the rest are
called secondary rays. The vertex incident at the primary can be obtained by setting
y =0, z=|min; ¢;|, and v; = ¢;+2 Vi € {1,...,n}. Now Lemke’s algorithm explores,
via pivoting, the path starting with the primary ray. This path must end either in
a vertex satisfying z = 0, i.e., a solution to the original system, or a secondary ray.
In the latter case, the algorithm is unsuccessful in finding a solution to the original
system; in particular, the original system may not have a solution.

Remark. Observe that z1 can be replaced by za, where vector a has a 1 in
each row in which q is negative and has either a 0 or a 1 in the remaining rows,
without changing its role; in our algorithm, we will set a row of a to 1 if and only
if the corresponding row of q is negative. As mentioned above, if g has no negative

4A representation of a polyhedron given by inequality and equality constraints in n dimensions
is said to be nondegenerate if on its d-dimensional face exactly n — d of its constraints hold with
equality. For example on vertices (0-dimensional face) exactly n constraints hold with equality. There
are many other equivalent ways to describe this notion.

5These are also known as almost complementary solutions in the literature.
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components, (2.1) has the trivial solution y = 0. Additionally, in this case Lemke’s
algorithm cannot be used for finding a nontrivial solution, since it is simply not
applicable. However, the Lemke—Howson scheme is applicable for such a case; it
follows a complementary path in the original polyhedron (2.2) starting at y = 0, and
guarantees termination at a nontrivial solution if the polyhedron is bounded.

3. Arrow—Debreu markets with SPLC utility functions. The Arrow—
Debreu market model [2] consists of a set G of divisible goods and a set A of agents;
let |G| = n and |A| = m. Assume that the goods are numbered from 1 to n and the
agents are numbered from 1 to m. Each agent ¢ € A has an initial endowment of
goods, say (wi,...,w},), where wi >0 Vj € G. These and other parameters defined
below will be assumed to be rational numbers. Without loss of generality (w.l.o.g.)
we assume that each agent i has a positive amount of at least one good and the total
quantity of every good is unit.

In this paper, we deal with the case of SPLC utility functions. For each agent
i and good j we are specified a function f} : Rt — R™ which is (nonnegative)
nondecreasing, piecewise-linear, and concave, and gives the utility that ¢ derives as
a function of the amount of good j that she receives. Her overall utility, u;(x),
for a bundle © = (z1,...,z,) of goods is additively separable over the goods, i.e.,
ui(@) = X e Fila):

Given prices p = (p1,...,pn) for all the goods, define the earning of agent i to
be > jeg wépj, i.e., the amount of money she earns by selling her initial endowment.
Agent i uses this money to buy an optimal bundle of goods, i.e., a bundle that maxi-
mizes her utility. We say that the market clears at given demand bundles if there is no
deficiency of any good and no surplus of any good having a positive price (note that
surplus quantities of any good having zero price can be freely disposed off without
decreasing agents’ utilities). At equilibrium prices there are choices of optimal bundles
for the agents such that after each agent is given such a bundle, the market clears.

We call each piece of f; a segment. The number of segments in function f; is
denoted by |le| and the kth segment of f; is denoted by the triple (4, j, k). The slope
of a segment specifies the rate at which the agent derives utility per unit of additional
good received. Suppose segment (i, j, k) has domain [a,b] C R, and slope c. Then,
we define u%y, = c and I}, = b—a. Note that for each function f; the length of the last
segment is infinity. However, since the total amount of good j available in the market
is unit, we assume w.l.o.g. that the length of the last segment is a small constant
greater than one. Clearly, Vk < |f;|, ué—k > “;(k+1) > 0. We will denote this market
by M.

3.1. Characterizing optimal bundles. Next, we characterize optimal bundles
of an agent ¢ relative to prices p. Define the bang-per-buck of agent i from segment
(4, k) relative to prices p to be

. uly
bpb’, = ﬁ
We take 0/0 as 0. The value bpbzk represents the utility derived by agent ¢ per unit
of money while obtaining good j corresponding to segment (7, k).

Clearly, ¢’s optimal bundle will consist of goods obtained on segments yielding
highest possible bang-per-buck and can be computed as follows. Sort i’s segments by
decreasing bang-per-buck and partition the segments by equality, i.e., each equivalence
class will consist of all segments having equal bang-per-buck. Let the classes be
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Q1,Q2, . ... At prices p, the segments in Q; make i equally happy, and strictly happier
than those in Q41, Q+2, . ... Hence, she would start buying partitions in order, until
all her money (> ; wépj) is exhausted. Suppose she exhausts all her money at the
k;th partition. The segments in partitions 1 to k;_1 will be called forced, those
in partition k; will be called flexible, and those in partitions k; ;1 and higher will
be called undesirable. Indeed, every optimal bundle is obtained in this manner: it
must fully allocate all segments in the forced partitions; the money left over after
this allocation is spent on segments in the flexible partition in any manner, since all
these segments have equal bang-per-buck; and no allocation is made corresponding to
segments in undesirable partitions. Note that, even though the agent buys segments
of a good separately, the resulting allocation is a valid allocation. This is because
Wi < UG_qy = bpbj, < bpbl_q).

The above characterization may also be obtained using KKT conditions of the
following linear program calculating an optimal bundle of agent :

max: Yo ubahy
st DR TPs < D0 Wips,
0<ai, <y, Y(j, k).

3.2. Strong connectivity. In general there may not exist market equilibrium
prices; in fact, for SPLC utilities, it is NP-hard to determine if they exist [59]. How-
ever, an equilibrium is guaranteed to exist under certain sufficient conditions. Let us
say that agent i is nonsatiated by good j if the last segment of f} has positive slope,
ie., u;"\fjl > 0.

Construct a directed graph whose nodes correspond to agents of market M and
there is an edge from i’ to 7 if and only if there is a good possessed by agent ¢ in
its initial endowment for which agent ¢ is nonsatiated. Market M satisfies strong
connectivity if this graph is strongly connected.

Strong connectivity is among the weakest known sufficient conditions for existence
of market equilibrium; see Maxfield [43].° Henceforth we will assume that market M
satisfies this condition.

4. LCP formulation. Building on Eaves’ formulation for the linear utilities
case, we derive an LCP formulation for Arrow-Debreu markets with SPLC utility
functions. Since the formulation turns out to be quite complex, we will do it in
stages. To start with, we obtain an LCP that captures all the market equilibria, but
also admits nonequilibrium solutions. Later we modify it so that the only solutions
that remain correspond to market equilibria. As stated in section 3.2, we have assumed
that the given market M satisfies strong connectivity, hence equilibrium does exist.

The LCP needs to accomplish two main tasks: ensuring market clearing (i.e., that
every good is fully sold and the money of each agent, obtained by selling her initial
endowment, is fully spent) and ensuring that each agent obtains an optimal bundle
of goods.

The first task is easy and in fact it does not even need complementarity—just
nonnegativity suffices. Let p; be a variable that denotes good j’s price and let q;:k
be a variable that denotes the amount of money spent by agent ¢ for buying good j
corresponding to segment (4, k). All variables introduced will have a nonnegativity

SEarlier, Arrow and Debreu [2] had proved that the following are sufficient conditions: (1)
Nonzero initial endowments: Every agent possesses a non-zero amount of every good. (2) Non-
satiation: Every agent is nonsatiated by some good.
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constraint; for the sake of brevity, we will not write them explicitly. Also, for each
agent i, let us introduce a variable \;. For now, our intention is that 1/)\; will be the
bang-per-buck of the flexible partition of i’s allocation.”

The first task is accomplished by the following constraints; we have included the
corresponding complementarity conditions in order to obtain an LCP in the stan-
dard form. (We will refer to these as follows: the equation number will refer to the
constraint and the equation number with a prime will refer to the complementar-
ity condition, e.g., (4.1) refers to the first constraint below and (4.1) refers to the
corresponding complementarity condition.)

(41)  VjeG: D> gxp<p; and p; | q—p;| =0
i,k

42)  Vied: S wip; <Y ¢ and N[> wipi =Y gl | =0
J J:.k J J.k

LEMMA 4.1. If p is an equilibrium price vector, then 3q such that (4.1) and (4.2)
are satisfied. Further, if (p,q) satisfy (4.1) and (4.2), and p > 0, then the market
clears.

Proof. For the first part, let & be the corresponding equilibrium allocation. Dis-
tribute 2 to obtain an allocation on individual segments %, as follows: start filling
up from the first segment until all of 333 is used up, i.e.,

i
Jk—rmn{max{a: - E ljk/ },jk}.
k' <k

Then the market clearing condition ensures that q} b= x; «D; together with p satisfies
(4.1) and (4.2).

For the second part, adding the constraints in (4.1) over all goods and those in
(4.2) over all agents we get

quk = ZPJ and Zwﬂpﬂ = Zqﬂc’

.5,k .5,k

respectively. Since Z jpj = Z p;, both these inequalities are equalities. Finally,
by nonnegativity, all the constramts in (4.1) and (4.2) must hold with equality. Thus
setting a7, = qjk/pj ensures market clearing. O

Ensuring optimal bundles is somewhat more involved and requires the full power
of complementarity. Consider a segment (4,7, k) in ¢’s flexible partition. By the
remarks made above, we want

1 ul'k
y bpr & P
Let (i,7',k") be a segment in one of i’s forced partitions. Clearly, bpbé-, o >
bpbi—k. To compensate for this, for each segment (4, j, k) in ¢’s utility functions let us
introduce variable 77, which can be viewed as a supplementary price associated with
this segment.

"Eventually, in Lemma 4.3 we will show that 1/)\; is a lower bound on the bang-per-buck of the
flexible partition of i’s allocation.
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Consider the following constraints and complementarity conditions:
(4.3) V(i j, k) : U}k)\i <pj+ “/}k and q;k(u;k/\l —Ppj — ’Y;k) =0.
(4.4) V(i j, k) : Q;'k < l;‘kpj and V;k(q;k - l;‘kpj) =0.

Let us denote the LCP defined by the sets of constraints and complementarity
conditions given in (4.1), (4.2), (4.3) and (4.4), together with nonnegativity on all
variables, as LCP (1).

LEMMA 4.2. Any equilibrium of market M yields a solution to LCP (1).

Proof. Consider an equilibrium of M. Substitute for the variables p;, q;-k, A; in
the manner described above. Because of the strong connectivity assumption, the
flexible partition of agent ¢ contains a segment with nonzero u; .. and therefore A; > 0.
Since the market clears, by Lemma 4.1, (4.1) and (4.2) are satisfied. Further, (4.1")
and (4.2) are also satisfied because each agent is nonsatiated for some good and the
market clears.

Substitute for the variables 7;'1@ as follows: if segment (i, 7, k) is flexible or un-
desirable, set it to zero, and if it is forced, set it so that the following equality is
satisfied,

1 e
AP
Clearly, all the ’y;'-k’s satisfy nonnegativity. Now, it is easy to verify that in each
of the three cases—that the segment (¢, 7, k) is forced, flexible, or undesirable—the
constraints (4.3) and (4.4), and complementarity conditions (4.3) and (4.4"), are all
satisfied. O

LCP (1) suffers from two shortcomings. First, since the right-hand-side (rhs)
vector of the constraints, denoted by g in section 2, is zero, the polyhedron is highly
degenerate—in fact, it is a cone with its vertex at the origin. Another eventuality
that results from g being zero is that Lemke’s algorithm is simply not applicable,
as mentioned in the Remark in section 2—for that q needs to have some negative
entries. Second, LCP (1) admits solutions that don’t correspond to equilibria, e.g.,
for a subset G’ C G if the market consisting of agents A and goods G’ satisfies strong
connectivity, then this submarket has an equilibrium. Find such an equilibrium, and
set the corresponding variables in accordance with this equilibrium. For each good
j€(G\G), set p; =0 and for each segment (i, j, k) of this good, set qjk = 0 and
Ve = ulpAi. One can verify that this is a solution to LCP (1).

Both these shortcomings can be circumvented as follows. For a good j, define
desire(j) to be the total amount represented by its nonzero utility segments, i.e.,
desire(j) = Z(l Kt >0 l;k Assuming strong connectivity, we observe the following:

e If for good j, desire(j) < 1, then there is an equilibrium of market M in
which p; = 0.

o If desire(j) > 1 then p; > 0 in every equilibrium of market M, otherwise its
demand will be more than its supply at p; = 0.

If for some good j, desire(j) < 1, then we may safely set p; = 0 and solve
the rest of the market. Therefore we further assume that desire of every good is
more than one and hence market M admits an equilibrium with each good having
a positive price. Furthermore, since in the Arrow-Debreu model, a nonzero scaling
of an equilibrium price vector yields an equilibrium price vector, we can impose the
condition Vj € G : p; > 1, or equivalently Vj € G : p; =p} + 1 and p} > 0, where p
is a new variable.
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The new LCP, LCP (2), is given below; nonnegativity is imposed on each of the
variables occurring in it. Observe that on substituting p;- = p; — 1, the only change
from the previous LCP is in (4.5’). As in LCP (1), this complementarity condition is
not needed for establishing market clearing. However, it does play an important role
in proving Corollary 5.3; see also the Remark in section 4.2.

(45)  Vjeg: Zq;ik—p;gl and  p (> gh—pj—1]=0.
i i,k

(4.6) Vie A: ijpj quk Z and
j
w[Suih 0 - ) =0
J Jik

4.7 Vi, 5,k): u;k)\l —pj— ’y;k <1 and q;k(u;k)\l —pi—1- ’y;-k) =0.
(48)  V(i,5,k): @ — U0 < Uy and (gl — Ugpy — 1) = 0.

It is easy to check that Lemmas 4.1 and 4.2 still hold. Additionally, we prove the
following.

LEMMA 4.3. In any solution to LCP (2), each agent receives an optimal bundle
of goods w.r.t. the prices of goods given by this solution.

Proof. Consider an agent i. First observe that A\; > 0, for otherwise (4.7) will be
satisfied as a strict inequality hence forcing, via (4.77), q;:k = 0 for each segment of ¢
and hence contradicting market clearing (Lemma 4.1).

Among all segments of ¢ on which a positive allocation has been made, consider
one having the lowest bang-per-buck, say it is (7,4, k). Let @ be the partition it
belongs to and let its bang-per-buck be

ujy, 1

Dbj 0;

The strong connectivity assumption ensures that 3(i,j, k) € Q with uz-k >0
as the agent is nonsatiated for at least one good. Thus, o; is well defined. Now,
by the constraint (4.7) for this segment, and the nonnegativity of ’y;'-k, we get that
Wi Ai = Dj +Vjp = Pj = W00 = A > 0y

Define @ to be the flexible partition, all partitions having bang-per-buck strictly
higher than 1/0; to be forced partitions, and all partitions having bang-per-buck
strictly lower than 1/0; to be undesirable partitions. Next, we will prove that the
names given are in accordance with those in section 3.1.

Consider an arbitrary segment of i, say (4,7, k). If it is in a forced partition, it
must have 'y;-k > 0 in order to satisfy (4.7). As a result, in order to satisfy (4.8"), the
inequality (4.8) must be satisfied with equality, i.e., this segment is fully allocated.
And if (1,7, ) is in an undesirable partition, then by construction it is unallocated
and we have ¢, = 0.

Finally, if (i,4,k) € @Q, there are two cases. If \; > oy, then in order to satisfy
(4.7), V;k > 0. Again, in order to satisty (4.8"), the inequality (4.8) must be satisfied
with equality, i.e., all segments in partition () must be fully allocated. And if \; = oy,
’y;'-k = 0 in order to satisfy (4.7) for the allocated segments of Q. In turn 'y;k =0
even for unallocated segments of (). As a result, the only constraints on q§ . are that
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0 < ¢} < IU%4pj, i.e., the allocation on this segment is flexible. In order to satisfy
market clearing, in both cases, the total money spent on segments in () must exhaust
all the money of 4 that is remaining after all forced partitions are allocated.

In both cases we get that 1/); is a lower bound on the bang-per-buck of the
flexible partition, i.e., 1/0;, as was promised. Also, by the characterization given in
section 3.1, 7 receives an optimal bundle of goods. O

THEOREM 4.4. The set of solutions of LCP (2) captures exactly the set of equi-
libria of market M, up to scaling.

Proof. From Lemmas 4.1 and 4.3 it follows that every solution of LCP (2) cor-
responds to an equilibrium of market M. Further, by Lemma 4.2 every equilibrium
of M gives a solution of LCP (1). Since we have assumed that for every good 7,
desire(j) > 1, p > 0 at this solution. Scaling it to ensure p > 1 gives a solution of
LCP (2). O

Theorem 4.4 settles the appropriate subcase of the open problem posed by Eaves
(1975) [19], of formulating an LCP to capture equilibria of markets with piecewise-
linear, concave utility functions.

4.1. Our nondegeneracy assumption. Recall that in section 2 while outlining
Lemke’s algorithm, we had assumed that the polyhedron corresponding to the LCP
was nondegenerate. Now, it turns out that the polyhedron corresponding to LCP (2)
has an inherent degeneracy, so we need to clarify the nondegeneracy assumption we
are making. The degeneracy comes about because of the following fact established in
the proof of Lemma 4.1: adding the constraints in (4.5) over all goods and those in
(4.6) over all agents yields two identical equations. Henceforth, we will say that the
polyhedron corresponding to LCP (2) is nondegenerate if it has no other degeneracies.
In other words, if a set of inequalities holding with equality at a vertex are linearly
dependent, then this linear dependency has to be between (4.5) Vj, and (4.6) Vi.

THEOREM 4.5. If polyhedron P corresponding to LCP (2) is nondegenerate, then
the solutions of LCOP (2) will be in one-to-one correspondence with the equilibria of
M, up to scaling.

Proof. Since the equilibria of M are scale invariant, we consider only those where
the minimum price is one. Let & be this set. In LCP (2), p} + 1 represents the price of
good j, and therefore it suffices to show one-to-one correspondence between elements
of £ and solutions of LCP (2) with p’ = 0 for some good j.

Given (p«,x.) € &, using Theorem 4.4 it maps to a solution of LCP (2) with
Pl = p« — 1 and g, as given in Lemma 4.1. We will show that the set of solutions of
LCP (2) with p’ = p/, and g = g is a singleton, and the theorem will follow.

Suppose it is not true. In a solution of LCP (2) fixing p’, q, and v fixes A as
well. Therefore, it must be the case that for some agent i, its flexible partition @ is

u;

fully allocated, i.e., qijk = l;k(p;j +1) V(j, k) € Q. Then setting \; = p;jil’

(j, k) € @ and *yji»k =0 Y(j,k) € Q gives a solution of LCP (2) together with p’, gx,
and other coordinates of 4 and A set accordingly. For this solution at least M + 2
conditions of P hold with equality, where M is the number of variables. Namely,
one each to satisfy complementarity conditions (4.7") and (4.8'), and market clearing
conditions (4.5), Vj, (4.6) Vi. This gives M conditions. One more from p; = 0 for
some j. And finally, V(j, k) € Q, (4.8) and 7}, > 0 hold with equality which gives at
least one more.

Even with inherent degeneracy at most M + 1 conditions can be tight at any
point of a nondegenerate P, hence we get a contradiction. a

where
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Remark. Observe that in the case that all segments of the flexible partition, @, of
an agent ¢ are fully allocated at an equilibrium, the setting of A\; in the corresponding
solution of LCP (2) is not unique—it can be set to any value in the range [0y, d;], where
1/6; is the bang-per-buck of the first undesirable partition. It is for this reason that
for an arbitrary market M, the statement of Theorem 4.5 cannot be strengthened to
claim a one-to-one correspondence between the solutions of LCP (2) and the equilibria
of market M, up to scaling.

4.2. The augmented LCP. LCP (2) has the same form as the formulation
given in (2.1) in section 2. Next, we obtain its augmented LCP, i.e., in the form of
the formulation given in (2.3); however, for simplicity we will not add slack variables
at this stage.

Observe that the rhs vector, i.e., g, of LCP (2) does have negative entries and
therefore, as stated in the Remark in section 2, Lemke’s algorithm is applicable.
Further, as stated in that remark, the z variable needs to be added only in the
constraints and complementarity conditions that have a negative rhs; in our case
these are precisely (4.6). Hence, we make two changes to LCP (2) to obtain the
augmented LCP, which we call LCP (3). First, we change (4.6) as follows:

Vie A: Zw;p; —Zq}k —2z< —Zw; and
J Jik ]

j

(4.9) | |

i Zw;(l + %) —Zq;-k —z|=0.
J gk

Second, we impose nonnegativity on z. If the polyhedron P’ of LCP (3) is non-
degenerate, then as described in section 2 its solutions form paths and cycles on the
1-skeleton of P’ and the Lemke’s algorithm traverses one of these paths. However,
the inherent degeneracy in LCP (2) described in section 4.1 extends to degeneracy in
P’ at points with z = 0. We need to argue that no other degeneracy is introduced
due to this augmentation.

In general, if a polyhedron is degenerate then it has a degenerate vertex.® We will
show that if nonzero parameters of the market, namely, uf’s, I}, ’s, and w}’s, are in
a general position then every vertex solution of LCP (3) with z > 0 is nondegenerate,
and therefore has a unique double label. Thus the solutions will still form paths and
cycles on the 1-skeleton of P’ (see section 2).

LEMMA 4.6. If nonzero u;k ’s, l;—k ’s, and w; ’s do not have any polynomial relation
among them, except for Y. 4 w; = 1Yy, then every vertex solution of LCP (3) with
z > 0 is nondegenerate.

Proof. Let v = (A,p’,¢,7,2) be a vertex solution of LCP (3) with z > 0. To
the contrary suppose it is degenerate, then there are at least two double labels at v.
Let T be the set of linear conditions of LCP (3) that are holding with equality at v.
Remove variables that are zero from all the conditions of 7, nonnegativity conditions
corresponding to these variables, and conditions corresponding to double labels from
T. A brief outline of the proof is as follows: using equalities of T, we will first write all
the nonzero variables as linear functions of z, where coefficients and constants of the
functions are in terms of monomials in market parameters. Finally, replacing these

8 A d-dimensional face of a polyhedron P in n dimensions is said to be degenerate if at least
n —d+ 1 conditions defining P are holding with equality at this face.
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in the two conditions corresponding to double labels will give a polynomial relation
among the parameters.

For forced segments, i.e., with ’yj-k > 0, remove (4.7) and (4.8) from 7, and replace
q;'-k with l;k(p;- + 1). Note that for undesirable segments (4.7) is not tight and q;'-k
is zero, and hence they do not have any of (4.7) or (4.8) in 7. Thus, none of (4.8)
remain in 7 and all the remaining (4.7) correspond to flexible segments.

Using the remaining conditions of 7~ we will write all the nonzero variables, except
z, as linear functions of z. The remaining qj- « s correspond to flexible segments, which
is at most one for any given (i,7). So we will rename it as q; Also rename the
corresponding u; x by u;

Let £ be the set of (i,7) pairs where agent ¢ has a flexible segment for good j,
i.e., the remaining equalities of type (4.7) with 'y;-k = 0. Thus, we have

(4.10) ujAi —pj =1 for each (i,j) € €.

Considering the pairs in £ as edges between elements of A and G we get a bipartite
graph, say H. This graph is acyclic, or else we get a polynomial relation between u;'-’s
using (4.10) along the cycle edges, and by eliminating A;’s and p;’s.

In every connected component of H pick a representative good. If there is an
undersold good in a component, then pick that as its representative good. Let g be
the representative good of a component C. Then for any j € C, using (4.10) for the

edges on the path between g and j in C, (pj + 1) can be written as j%ggg (p, +1),
where f1(U) and f2(U) are monomials in ué-’s, and similarly \; for each agent i € C.
If ¢ is undersold then p; = 0 and hence Vj € C, p;- is a constant represented by the
ratio of monomials in u?’s. Further, no other good can be undersold in C or else using
this fact we will get a polynomial relation in u}’s.

Suppose for component C, g is not undersold, i.e., all its goods are fully sold.
Consider a leaf node u of C and remove the edge, say (u,v), incident on it to construct
C’. Consider C’ as rooted at v. Using market clearing conditions (4.9) and (4.5),
respectively, for agents and goods in C’ from leafs to the root, we can write all the
q§’s for edges in C’ as linear functions of representative price variables and z. Market
clearing conditions of v and v give two different expressions for qj- on the missing edge
(u,v), and thus we obtain a linear relation among representative prices and z. This
has to be a nontrivial relation because exactly one of them will have a w; not present
in the other.

Even if g is undersold implying p’g = 0, using a similar approach where g is a
root, q;'-’s of component C can written as linear functions of representative prices and
z. This generates a system of linear equations, one for each component: p; =0ifgis
undersold, and a linear equality in z and representative prices if g is fully sold. From
these obtain p;’s as linear functions of z. Replace these in expressions for A;’s, q§’s,
and remaining p;’s to obtain their linear functions on z.

Now consider the equalities corresponding to double labels that we had removed
from 7. Replace all the variables by their linear function in z. Use one to get an
expression for z in terms of input parameters u;'-k’s, ;k’s, and wj—’s. Replacing z in
another gives a polynomial relation among the parameters, even after replacing any
>, w} with one. This is because there is no such way to eliminate uf’s and I}, ’s. A
contradiction. O

Remark. Clearly, the set of solutions of LCP (3) in which z = 0 enjoy all properties
established in Theorem 4.4 and its lemmas. However, if z > 0, market clearing, which
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was shown in Lemma 4.1, does not hold. Despite the nonapplicability of Lemma 4.1,
observe that by (4.5'), if p}; > 0, then good j must be fully sold. This fact will be
used at multiple places, e.g., for proving Corollary 5.3.

5. Proving nonexistence of secondary rays. Recall from section 2 that the
set of solutions of LCP (3), called S, consists of paths and cycles. A crucial fact
needed for the correctness of our algorithm is that the polyhedron P’, defined by the
constraints of LCP (3), has no secondary rays and hence the path starting with the
primary ray must lead to a solution with z = 0, i.e., an equilibrium for market M.
Our proof will critically use the fact that M satisfies strong connectivity. Recall that
a ray is an unbounded edge of S such that the vertex of P’ it is incident on satisfies
z> 0.

Consider an arbitrary ray that is incident on the vertex (yu«, z«), with z, > 0 and
has the direction vector (yo, 20). The set of points on the ray is

R= {(y*,z*) + a(yC‘vZO) | Va 2 0}

Clearly, every one of these points is a solution of LCP (3). Now, this fact imposes
such heavy constraints on y., Yo, zx, and z, that only one possibility results, namely,
Yx = Yo = 0 and z, > 0, i.e., this ray is the primary ray. This is precisely the reason
that P’ has no secondary rays.

We prove this fact below. The proof is long since we need to show that each of
the other possibilities leads to a contradiction. All but one of the contradictions? uses
the following simple fact: (y«,z«) + @(yo, 2o) needs to be a solution of LCP (3) for
unbounded values of a.. Let us start by showing that yo, > 0 and z, > 0. If not, for
sufficiently large o we will get a point that has a negative coordinate, contradicting a
nonnegativity constraint in LCP (3).

The vector y consists of four types of variables, ie., y = (A, p’,q,7). Let pl
denote the price variables in the direction vector y,. At the top level, we will consider
the three cases (i) pl, > 0, (i4) pl # 0, p. # 0, and (ii7) p/, = 0. The first two cases
lead to contradictions, the second through strong connectivity. Finally, in the third
case we show that only one alternative can hold: that R is the primary ray.

W.r.t. a solution 7" to LCP (3), define the surplus of agent i to be the difference
of her earnings and the amount of money she spends, i.e., 3 wipj — Dk i

Cram 5.1. W.r.t. a solution T to LCP (3),

e if \; =0 then the surplus of i equals her earnings;
e if \; > 0 then the surplus of i equals z.

Proof. If A; = 0 then for each segment (4, j, k) of i, (4.7) is satisfied with strict
inequality. Hence, by (4.7'), q;:k = 0. Hence i does not spend any money and her
surplus equals her earnings.

If \; > 0 then by (4.9'), 2 = >, wi(l+p)) — 30, ¢} Hence, by (4.9), 2
represents her unspent money. Since z > 0, i’s surplus is nonnegative. a

LEMMA 5.2. Ifin a solution, T, to LCP (3), each good is fully sold then z = 0.

Proof. Since each good j is fully sold, pj = 1+p; = >, , q;k Adding over all
goods we get }; .\ q;-k = >_; p;j- The left-hand side (Lh.s.) of this equation is the total
money spent by all agents. Since there is one unit of each good, Z” w;'-pj = Zj Dj-
The Lh.s. of this equation is the total money earned by all agents. The two equations
imply that the total surplus of all agents is zero. Since z > 0, by Claim 5.1, each

9The exception is the contradiction in Corollary 5.3.
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agent has nonnegative surplus. Therefore, each agent must have zero surplus. Hence
by Claim 5.1, A; > 0 Vi and z = 0. 0

COROLLARY 5.3. pl # 0.

Proof. Suppose pl > 0. Then, at every point of R with o > 0, p’ > 0 and
therefore by (4.5") every good is fully sold. Hence, by Lemma 5.2, z = 0. Now, we
have already established that p/, > 0 and z, > 0, and by definition of a ray, z, > 0.
Therefore, at every point of R with a > 0, z > 0 leads to a contradiction. a

LEMMA 5.4. It cannot be the case that pl # 0 and pl # 0.

Proof. Assume that p! # 0 and p/ # 0. Let S C G be the set of goods for which
the vector pl is zero and S be the remaining goods; by assumption, both these sets
are nonempty. Let A; C A be the set of agents who are nonsatiated by at least one
good in S. Clearly, the prices of goods in S remain constant throughout R and those
of goods in S go to infinity. Hence eventually, the bang-per-buck of all segments
corresponding to goods from S will dominate that of goods from S. Note that at
every solution of LCP (3), allocation of each agent is as per the decreasing order of
bang-per-buck due to (4.7), (4.7), (4.8), and (4.8").

By (4.5), each good in S is fully sold. Now, since only goods in S can remain
unsold, the total surplus of all agents is bounded. Since z > 0, by Claim 5.1 each
agent has a nonnegative surplus and hence the surplus of each agent is bounded.
Now, consider an agent i who has a good from S in her initial endowment. Since her
earnings go to infinity and her surplus is bounded, she must eventually buy up all
segments corresponding to goods in S for which she has positive utility. We will use
this observation to derive a contradiction by considering the following three cases.

Case 1: A; = A. By the observation made above, any agent having a nonzero
amount of a good from S must eventually demand more than one unit of some good
in S, contradicting (4.5).

Case 2: ) ¢ Ay C A. By strong connectivity there must be i; € A; and i3 €
(A\ A;) such that iy has a good for which iz is nonsatiated. Since i2 ¢ Ay, this good
must be from S. Since 41 has a good from S, by the observation made above, i; must
eventually demand more than one unit of some good in S, contradicting (4.5).

Case 3: A; = (). Consider an arbitrary agent i. For strong connectivity to hold,
there must be some agent i; such that ¢ has a good for which i; is nonsatiated.
Since A; = (), this good is from S. Hence each agent has a good from S in her
initial endowment. Let j € S. Now, by the observation made above, all agents will
eventually buy all segments of j for which they have positive utility, contradicting
(4.5), since desire(j) > 1. a

LEMMA 5.5. If pl =0 then R is the primary ray, i.e., Yo =0 and y. = 0.

Proof. If p!, = 0 then the price of each good remains constant on ray R. Since by
(4.5) no good can be oversold, go = 0. Furthermore, the money earned by each agent
7 remains unchanged throughout R. Therefore, the forced, flexible, and undesirable
partitions of ¢ remain unchanged and hence, corresponding to each of her undesirable
and partially allocated segments, ’y;k = 0 throughout R.

A consequence of strong connectivity is that each agent i must be nonsatiated
for some good, say j. Hence there must be a segment (i, j, k), with u;'»k > 0, that is
undesirable or partially allocated. Now, in order to satisfy the constraint (4.7), \;
cannot increase, forcing Ao = 0. As a result, for a forced segment (i, j, k), 'y;k cannot
increase—otherwise (4.7") will force qé r = 0. Putting this together with the assertion
about undesirable and partially allocated segments made above, we get that v, = 0.
Hence, yo = 0. Therefore z, > 0, or else the direction vector will be the all zero
vector.
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TABLE 1
Complementary pivot algorithm for SPLC utilities.

Initialization: Let T < Tg

While z> 0 in the current solution T to LCP (3'), do
Let i be the double label in solution 7', i.e., v; =y; =0 at T'.
If v; just became 0 at the current vertex, then pivot by relaxing y; = 0.
Else, pivot by relaxing v; = 0.

Let T' be the solution to LCP (3') at the newly reached vertex. T «+ T".
Endwhile
Output solution T'.

Next we show that y. = 0. Throughout R, for each agent ¢ the money spent
and money earned remain unchanged; however, z increases. Therefore, > ; w;p; —
ij(qék) —z< Zj w; at each point of R except possibly at the vertex of polyhedron
P’. Hence \; has to be zero on the rest of the ray, forcing A, = 0. Therefore, for
each segment, (4.7) is satisfied as a strict inequality, which forces g. = 0 by (4.7").
Now, by (4.5"), this forces p/, = 0, and in turn (4.8") forces v, = 0. Altogether we get
Y = 0. O

Corollary 5.3, Lemmas 5.4 and 5.5 give the following theorem.

THEOREM 5.6. The polyhedron P’, defined by the constraints of the augmented
LCP for SPLC market M, LCP (3), has no secondary rays.

6. Algorithm and results. Before presenting the algorithm, let us add slack
variables to the constraints of LCP (3)—assume that the slack variable that is added
to the ath constraint is v,. This gives us an LCP in the form of the formulation given
in (2.3); call it LCP (3'). The algorithm appears in Table 1. Here T} is the solution
to LCP (3') corresponding to the vertex of polyhedron P’ at which the primary ray
is incident. If M is the matrix of this LCP and d is the coefficient vector of variable
z, then Ty = (y%, 0, 2°), where y” = 0, 2° = max; 3-; w}, and v* = ¢ — My + dz.
Clearly, for i’ € argmax; ) w;‘-, we have v9 =y = 0.

Assuming that nonzero market parameters are in a general position (except for
one w} per good so that Y-, w} = 1), Lemma 4.6 ensures that vertices with z > 0 are
nondegenerate. Therefore the algorithm will never encounter degeneracy and hence
will have a unique double label in each step.

In the absence of a nondegeneracy assumption, there are standard ways to handle
degeneracy in Lemke’s scheme, namely, the lexico-minimum ratio test (see section 4.3
of [48] and also [8]) to ensure termination in a finite number of steps. Using similar
techniques, the algorithm of Table 1 can be modified to handle degeneracies as well.
Thus, Theorem 5.6 directly yields the following.

THEOREM 6.1. If an SPLC market M satisfies strong connectivity and the desire
of each good exceeds one, then M admits an equilibrium and the algorithm in Table 1
terminates with one.

Theorem 6.1 settles the appropriate case of the open problem, posed by Eaves
(1975) [19], as described in the introduction. The algorithm also gives a construc-
tive proof of the existence of an equilibrium for SPLC markets that satisfies strong
connectivity.

THEOREM 6.2. Assuming strong connectivity, the problem of computing an equi-
librium of a market with SPLC utilities is in PPAD.

Proof. By Theorem 5.6, the algorithm in Table 1 must converge to an equilibrium.
Let v be a vertex on the Lemke path found by this algorithm. To prove membership of
SPLC markets in PPAD, we need to show that the unique predecessor and successor
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of v on this path can be found efficiently. Clearly, these two vertices, say u and w, can
be found simply by pivoting. To determine which vertex leads to the start of the path,
i.e., the primary ray, and which leads to the end, we use Todd’s result [57] on the
orientability of the path followed by a complementary pivot algorithm. Todd shows
that the signs of the subdeterminants of tight constraints satisfied by the vertices u,
v, and w give this information. Hence we get a direct proof of membership of the
problem in PPAD. O

This settles the question posed by Vazirani and Yannakakis in [59] of obtaining a
direct proof of the membership of the problem in PPAD.

Observe that the polyhedron corresponding to LCP (3) has the same inherent
degeneracy at z = 0 as that of LCP (2), and is explained in section 4.1. The reason
is that at any solution to LCP (3) at which z = 0, the market clearing conditions are
satisfied and the dependence in the constraints established in Lemma 4.1 holds. Once
again, we will say that the polyhedron corresponding to LCP (3) is nondegenerate if
it has no other degeneracies at z = 0, and conditions of Lemma 4.6 are satisfied.

LEMMA 6.3. Let v be a vertex solution to LCP (3) with z = 0. Then there is
exactly one j € G with p;- =0 at v assuming nondegeneracy.

Proof. The nondegeneracy assumption ensures that exactly one extra inequality
is tight at v, implying that for exactly one complementarity condition the variable is
zero and inequality is also tight. The surplus of agents is upper bounded by z (using
(4.9)), and hence is at most zero. This together with (4.5) implies that all the goods
are sold completely, i.e., all of (4.5) hold with equality. Therefore there cannot be
more than one p; = 0 at v.

Suppose, there is no p} = 0 at v. Consider a point w in the interior of the edge
preceding v. At w we have p’ > 0 and z > 0, a contradiction due to Lemma 5.2. a

Let v be a vertex solution to LCP (3) with z = 0. By Lemma 6.3, there is exactly
one j € G with p’ =0 at v. Relaxing p’ = 0 gives an unbounded edge, starting at v,
at which z remains zero. Therefore, every point of this edge corresponds to a market
equilibrium in which the prices at v are appropriately scaled.

THEOREM 6.4. If the polyhedron P’ corresponding to LCP (3) of an SPLC market
is nondegenerate, then M has an odd number of equilibria, up to scaling.

Proof. As observed in section 2, the set of solutions, S, to LCP (3) consists of
paths and cycles (using Lemma 4.6). The solutions of LCP (3) satisfying z = 0 are
precisely the solutions to LCP (2). By Theorem 4.5, the latter are in one-to-one
correspondence with the equilibria of market M, up to scaling. Now, solutions of
LCP (3) satisfying z = 0 occur at endpoints of such paths. One of the paths starts
with the primary ray and ends with an equilibrium. Since by Theorem 5.6 P’ has no
secondary rays, the rest of the equilibria must be paired up. Hence there are an odd
number of equilibria. O

7. Strongly polynomial bound. Devanur and Kannan [14] gave a polynomial
time algorithm for SPLC markets when either the number of goods or the number of
agents is a constant, using the “cell decomposition” technique and the fact that the
number of nonempty regions (cells) formed by n hyperplanes in R is at most O(n?).
We use similar techniques to show a strongly polynomial bound on the number of
fully labeled vertices in the polyhedron P’ of LCP (3), when the number of goods or
agents is constant. This in turn gives a strongly polynomial bound for our algorithm
for this case.

Suppose the number of goods, i.e., n, is a constant. The idea is to decompose the
(p1,-..,Dpn, z)-space (i.e., R’frl) into cells by a set of polynomially many hyperplanes
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such that every cell corresponds to a unique setting of forced, flexible, and undesirable
partitions. Then we show that every fully labeled vertex of P’ can be naturally
mapped (by projection) to a cell and this mapping maps at most two vertices to any
given cell. We describe below how to get the cell decomposition.

7.1. Constant number of goods. Consider R’frl with coordinates p1, ..., pn,
z. For each 5-tuple (¢,7,7,k, k'), where i € A, j # j € G, k < |f;|, and k' <
| f},|, introduce hyperplane uékpj/ — ué, wP; = 0. These hyperplanes divide the space
into cells and each cell has one of the signs <,=,> for each hyperplane. For each
agent, these signs give partial order on the bang-per-buck of her segments. Using this
information for a given cell, we can sort all segments (j, k) of agent i by decreasing
bang-per-buck, and partition them by equality into classes Q%, Q%, . ... Let Ql< ; denote
QiU U---UQ;_,. Similarly, we define Q% and Q.

Next we want to capture the flexible partition. To do this, we further subdivide
a cell by adding a hyperplane Z(j,k)eQQl l;kpj = Zjeg w;pj — z for each agent i and
each of her partitions Q. For any given subcell, let Q}L be the rightmost partition
such that Z(j7k)eQi<li liypj < >jeg wip; — z, then Qj is the flexible partition for
agent 7. In addition, we add hyperplanes p; =1 Vj € G and z = 0, and consider only
those cells where p; > 1 and z > 0.

Given a vertex (y, z) on the path traced by our algorithm, there is a natural cell
associated with it, namely, due to projection of it on (p, z)-space.

LEMMA 7.1. Each cell is mapped onto from at most two fully labeled vertices of
the polyhedron P’ corresponding to LCP (3). Furthermore, if a cell is mapped onto
from two vertices, then they must be adjacent.

Proof. Each fully labeled vertex and each cell have their own settings of forced,
flexible, and undesirable partitions, for each agent. Hence, if a fully labeled vertex
maps onto a cell, then these two settings, one coming from the cell and the other from
the vertex, must match. A fully labeled vertex v = (X, p’, q,~, z), which maps onto a
given cell, must satisfy the following equalities. In the cell we have the following:

o If p; > 1 then 3, ¢}, —pj — 1 =0else pj =0 at v.

o If 37, w;pj — 2z > 0 (second set of hyperplanes for the tuple (4,1)) then
ijé(p;+l)—zj)kq§k—z:Oelse)\?:Oatp. |

o If ulypj —ujyp; > 0fora (5, k') € Q) then ujA; —p; —1— 75, =0 else

g =0 at v.
o Ifulypj —ul,,p; > 0fora (5, k) € Q) then gl — 1 pf —1% = 0else v, =0
at v.

Since from each of complementary conditions given above one equality is enforced,
their intersection forms a line. If this line does not intersect P’, no fully labeled vertex
gets mapped to the cell under consideration. If it does then the intersection can be
either a fully labeled vertex, say v, or a fully labeled edge—we will say that an edge
of the polyhedron P’ is fully labeled if the solution represented by each point of this
edge is fully labeled. In the former case only vertex v gets mapped to the cell and in
the latter case only the endpoints of the fully labeled edge map to the cell—clearly
these are two adjacent vertices of P’. d

Note that the total number of hyperplanes we introduced is strongly polynomial,
thereby creating strongly polynomially many cells.

7.2. Constant number of agents. So far, we had considered a partitioning of
the segments corresponding to each agent. For this case, we will consider a partitioning
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of the segments corresponding to each good, as detailed below. Besides this change,
the analysis for this case is similar to that of the previous case.

Consider R with coordinates A1, ..., Ay,. Every fully labeled vertex (X, p’, q, 7, )
naturally gets mapped to this space by taking a projection on A. Before getting into
cell decomposition we discuss some properties of fully labeled vertices.

Given a fully labeled vertex, for every good j sort all its segments (i,7,k) in
decreasing order of 'U’;‘k/\iv and partition them by equality into classes Q7,Q3,.... It
is easy to verify that at this vertex, good j gets allocated in the order of partitions,
starting from the first. If a segment (4, j, k) € Q7 is allocated (i.e., q;'-k > 0), then all

the segments in partitions before Q{ must be completely allocated. We call the last
allocated partition a flexible partition, all the partitions before it forced partitions
and all partitions after it undesirable partitions for good j. Further, let (i, j,k) be a
segment in the flexible partition of good j. Then, we have u; N = 1+ p}, otherwise all
the segments in this partition are either undesirable or all of them are forced for the
corresponding agents. Therefore, the flexible partition of any good defines its price.
Next we decompose the R space into cells (by introducing hyperplanes) such
that every cell captures the segment configurations for each good. Introduce hyper-
planes of type ufy \; — u;'-,k,)\i/ = 0 for each 5-tuple (4,7, j, k, k'), wherei #i' € A, j €
g, k< |le|7 and k' < |le/ |. Given a cell, the signs of these hyperplanes in the cell give
a partial order of segments (7, k) for every good j based on u?kAi. For each good j
sort its segments in decreasing value of u;-k/\i using this partial order, and partition

them by equality into classes @7, @3, . ...

Next we capture the flexible partition for every good. For a fully sold good, it may
be computed easily by just summing up the segment lengths starting from the first
partition until it becomes one. However, a fully labeled vertex may have undersold
goods. Since the price of such a good is fixed to one (p’ is zero), segments in its flexible
partition have ), A; = 1. To capture this we introduce u’; A; — 1 = 0 for each (4, j, k).
In general the flexible partition for good j is the earlier one of the two: partition when
good is fully sold and the partition with u;k)\l = 1. This can be easily deduced for a
given cell from the signs of the hyperplanes. Further, we put A\; = 0 for each ¢ € A.

From the above discussion it is clear that given a cell the equalities of the fully
labeled vertices mapping to it may be worked out as done in Lemma 7.1. Further, we
get one equality for every complementary condition, since every cell captures complete
segment configuration, status of goods, and agents in the market. Thus, we get the
following lemma.

LEMMA 7.2. Each cell is mapped onto from at most two fully labeled vertices of
the polyhedron P’ corresponding to LCP (3). Furthermore, if a cell is mapped onto
from two vertices, then they must be adjacent.

It is clear that our algorithm follows a systematic path instead of brute force enu-
meration of all the cells. The next theorem follows directly from the above discussion,
since the number of hyperplanes introduced is strongly polynomial in both cases.

THEOREM 7.3. For an SPLC market with a constant number of agents or goods,
our algorithm computes an equilibrium in strongly polynomial time.

8. Combinatorial interpretation for linear case. In this section, we give a
complete combinatorial interpretation for Eaves’ algorithm for the linear case. We
then provide an example to illustrate that our algorithm for the SPLC case has a
much more complex mechanism and we leave the open problem of obtaining its com-
binatorial interpretation.
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Dropping index k, since each utility function has only one segment, we specialize
LCP (3) to this case below; let us call it LCP (4) and denote its polyhedron by P'.
Two additional simplifications are made: First, 1/); will be the maximum bang-per-
buck of agent i, which is defined to be

ul

max —Z.

JE€YG Dj

Second, we don’t need the variables 'y;-k and the constraints and complementarity
conditions given in (4.8). This was precisely the LCP derived by Eaves [20].

(8.1) Vjeg: Zq;-—pg-gl and  pj <Zq§-—p}—1>:0.
(8.2) VieA: Zw}p}—Zq;-—zS—Zw; and
J J J

i Zw;-(p;-+1)—2q§—z = 0.
J J

(8.3) Y(i,7): uj»)\i -p; <1 and q;(u;/\l -p;—1)=0.

Construct a bipartite graph whose vertices are A U G and (i,7) is an edge iff
inequality (8.3) is satisfied as an equality. Call this the tight graph and its edges
the tight edges. Observe that tight edges correspond to the maximum bang-per-buck
(agent, good) pairs. By (8.3'), goods can only be sold along tight edges. Also, agents
having \; = 0 do not have any edges incident at them and goods having p} = 0 may
or may not have edges incident at them.

Next, let us analyze the changes that take place while moving along an edge e of
polyhedron P! during the algorithm. Since an equilibrium is not reached yet, z > 0
on e. The set of inequalities that are tight remain unchanged at all points of e except
for the two end vertices where an extra inequality is tight. Consider the connected
components of the tight graph corresponding to the tight inequalities on e; singleton
agents are not considered as components.

By (8.1"), if pj > 0, j must be fully sold. If all goods are fully sold, all of the
agents’ money must be spent, making z = 0 (using Lemma 5.2). However, since
z > 0, there is at least one undersold good, say j and p} = 0 at all points of edge e.
Furthermore, the tight graph too remains unchanged on all points of e implying that
in a component (p} +1)’s and A;’s have to change by the same multiplicative factor
in order to maintain equalities of type (8.3) corresponding to tight edges. Hence,
the prices of goods and the \;’s of agents must remain unchanged, in any component
containing a good with p; = 0, while moving along e.

Next consider the remaining components. Note that all goods in these components
are fully sold and all agents have the same surplus, namely, z (using Claim 5.1). Since
each good has edges to all agents who buy this good, the goods of such a component are
sold precisely to agents in this component. Now, if these agents do not own any goods
from outside this component, then they cannot have positive surplus, contradicting
z > 0. Hence they must own goods from outside this component. As noted earlier,
in such a component, (1 + p’)’s and \;’s change by the same multiplicative factor.
Hence prices and \;’s in a component either monotonically increase or decrease. Next
we show that it is in fact true across all the components.
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LEMMA 8.1. While tracing an edge e of polyhedron P

e all prices and \;’s either monotonically increase or monotonically decrease;

e 2z monotonically decreases iff prices monotonically increase.

Proof. For the first part, we know that all (1+ p;-)’s and \;’s either monotonically
increase or decrease in a component of a tight graph. We only need to show that it
is true across the components as well. To the contrary, let S; and S be the sets of
components whose prices strictly decrease and increase, respectively. Consider the
market clearing conditions for all the agents of S;. The total income of these agents
increases, while the total spending decreases. Therefore, the total surplus of these
agents increases. Since the surplus of all these agent is the same, namely, z, we get
that z is increasing on e.

On the other hand, consider the market clearing conditions for all the agents of
Ss. The total income of these agents decreases and the total spending increases, hence
the total surplus of these agents decreases. This implies that z has to decrease on e,
a contradiction.

For the second part, suppose z decreases and prices also decrease. Consider the
subset S of components of a tight graph for which prices strictly decrease. As prices
of goods outside S remain constant, the decrease in total spending of agents in S is
strictly more than the decrease in their earnings, hence the surplus, i.e., z, increases.
The other direction follows using a similar argument. O

Next, let us analyze the changes on the entire path 7 followed by the algorithm.
Let e1 and ey be two adjacent edges on 7 with a common vertex v = (A, p, g, z). While
moving on 7w suppose the algorithm enters v through e; and leaves it through es.

LEMMA 8.2. If z is decreasing on ey while moving towards v, then it keeps
decreasing on e while moving away from v.

Proof. The new tight inequality at v corresponds to its double label, and de-
termines what to relax to move on es. There are six possibilities for the new tight
inequality. For each of them we argue that if z is decreasing while moving along e;
towards v, then it will monotonically decrease while moving away from v on es. Let
the new tight inequality at v be as follows:

1>, qj— — p} < 1: Then we relax p} = 0 to obtain es. Hence, prices monotoni-
cally increase and z monotonically decreases on ez (using Lemma 8.1).

2. =30, ¢+ > wip — 2 < =37 wh: Then we relax \; to move on ez. In this
case agent ¢ is not part of any component yet, so all the prices and z remain
constant.

3. p} > 0: This case never arises otherwise the prices should decrease on e;. A
contradiction to z decreasing on e; using Lemma 8.1.

4. X\; > 0: This case never arises otherwise \;’s should decrease on e;. This in
turn implies prices are decreasing and z is increasing on e; (Lemma 8.1), a
contradiction.

5. uf)\k — p; < 1: Then we relax ql’“ = 0. This case is a little involved.

On e; let Cy be the set of components containing undersold goods, i.e., con-
stant prices. Let Cq,...,C), be the rest of the components. Clearly, k ¢ Cp.
Suppose, k € Cy (w.l.o.g.). There are two cases. The case when [ € Cp is
easy. Then C] merges with one of the components in Cy and therefore gets
connected with a good j whose p;- = 0. Hence prices of goods in C; are fixed
on eg; if the rest of the prices decrease then the income and in turn surplus
of agents in Cy decreases, a contradiction (using Lemma 8.1).

For the other case, let | € Cy (w.l.o.g.). In component C, suppose the
(14 p})’s and \;’s change by a multiplicative factor a, on ej. Since an agent
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of C got interested in a good of Cy at v, we have a; > as > 1. Let z change
by a multiplicative factor a on e.
Consider all a’s relative to aj, or in other words all the price changes rela-
tive to price changes in C;. Using the market clearing conditions for the h
components we can write o, = ¢, + d; and a = cag +d. On ez, C7 and
Cs merge into a single component C1. Let o’s be the factors on ey, and
similarly express each o, as a linear expression ¢}, +d, and o = o5 +d'.
Since all the prices either increase or decrease on an edge (Lemma 8.1), we
get ¢, ¢l >0 Vo > 3.
CLAIM 8.3. ¢, < ¢, Vo > 3.
Proof. Suppose, on e; we get o, = cy1a1 + Cpoqo + dp Vo > 3, if we do
not eliminate . In addition, we have as = coap +dy = a1 = 01—20[2 — ‘ci—j.
Replacing these two in «a, gives, a, = CC””—;OQ + CcpoCo; — %Cﬂ + docyo + dy.
This gives cy1 = czoco implying that c,1 > 0 < c,o > 0 because ¢ > 0.
Further we get ¢, = cz1 + czaco, and then ¢, > 0 implies that c;1,cz0 > 0.
Since Cs, ..., are unchanged when we move from e; to ez, and since Cy
and Cy merge and form Cj5 on ez, we have the same expression hold on es
with a; and s replaced with aje. Thus, we have ¢, = ¢z1 + ¢z2. Finally,
a1 > ag gives ¢o < 1, and in turn we get ¢, < ¢, Vo > 3. O
At v we have o}y = 1. When we relax ¢f = 0 at vertex v and move on e,
exactly one of the following two happens: either o/}, > 1 or o, < 1. Clearly
a5 > 1 will imply that z decreases on ez as was required (Lemma 8.1).
To the contrary suppose o5 < 1 on e3. Then ¢, < ¢/, Vo > 3 implies that
the total surplus of agents in subcomponent Cy of Ci5 decreases at a faster
rate on es. This is possible only if Cy gets money from Cy through the (k,1)
edge implying ‘Izk < 0, a contradiction.
6. g5 = 0: Then we relax uy; —p; = 0. A similar analysis to the previous case
works to show that z monotonically decreases in this case too. d
We know that on the primary ray z monotonically decreases. Hence by Lemma 8.2,
it decreases on the entire path starting with the primary ray, and at the end of the
path, when equilibrium is achieved, it becomes zero. Now, if there are more equilibria,
they must be at the endpoints of other paths, as shown in Theorem 6.4. Therefore,
z = 0 at both the endpoints and it must increase monotonically while following the
path backwards. Thus, both should lead to the primary ray, a contradiction. Hence
we get the following.
LEMMA 8.4. If the polyhedron P' of LCP (4) for a linear market is nondegenerate,
then the market has a unique equilibrium up to scaling.
Finally, we give an example to illustrate that our algorithm for the SPLC case has
a much more complex mechanism. In this example, neither does z decrease monoton-
ically nor do prices increase monotonically on the path starting with the primary ray.
Example 8.5. Consider a simple market with 2 agents, 3 goods, and 2 segments
for every pair of agent and good, where

0.2 0.1 0.9 0.7
W = 8'2 8‘3 8; Uz =109 0.7 |, Us=1 08 0.1 |,
' ' ' 0.8 0.6 0.4 0.2
0.3 1 0.3 1
Lg=|06 1 |, Lg=|09 1
0.9 1 1 1
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TABLE 2
The values of z,p1,p2, and p3 as the algorithm runs on Example 19.

iter. 1 2 3 415 6 7 8 9 10 11 12

z 22119119 |1]|1]08] 0.8 0.7 0.725 0.275 0.05 0
1+ p) 1 1 1 111 1 1 1 1 1.5625 | 1.375 | 1.5
1+ pf 1 1 1 111 1 1 1.125 | 1.125 1.125 1.5 1.5
14 ph 1 1 1 111 1 1 1 1 1 1 1

In U¥s and L"’s above, the rows correspond to goods and columns to segments,
and in W rows correspond to agents and columns to goods. The changes in values
of z,p},ph, and ph, during a run of the algorithm for this market, are recorded in
Table 2. Neither z nor p;-’s are monotonic as shown by the gray cells in the table.

8.1. A combinatorial algorithm. The various observations made above lead
to a combinatorial algorithm that is equivalent to Eaves’ complementary pivot algo-
rithm. We assume that the given market is nondegenerate; this can be achieved by
a small perturbation of ué’s. We continue with the terminology set in the previous
section.

Let Ap be the set of agents with surplus less than z, and let A; = A\ .Ap. Consider
the bipartite graph between agents of 4; and all the goods, and the tight edges. Recall
that edge (7,J) is said to be tight if agent i gets maximum bang-per-buck from good
j at current prices. We say that edge (4, j) is nonzero if agent ¢ is spending money on
good j.10

Let E be the set of tight edges. Let Cy be the set of components of E' containing
undersold goods; prices of goods in C remain unchanged. Let components of F \ Cy
be C1,...,C;. Let «; be the multiplicative factor with which prices of goods in C;
change (p; changes to a;p;). Note that g = 1. The market clearing conditions for
each C; gives [ equalities in a,...,q; and z. Using these every «; can be written as
a linear function of z, namely, ¢;z + d;. Hence, as z changes «; changes accordingly.

Starting with z set to the maximum surplus and prices set to one, we will decrease
z and accordingly increase prices (Lemma 8.2) so that the following conditions are
maintained. These are exactly the conditions (8.1), (8.2), and (8.3), respectively,
forming the Eave’s LCP.

e Goods are never oversold, and the price of an undersold good is set to one.

e Surplus of an agent is at most z, and only agents with surplus z are in the
market (can spend money).

e Agents spend money only on goods giving highest bang-per-buck, i.e., the set
of nonzero edges is a subset of F.

Note that as the prices and the surplus change, the money spent by agents on
goods also changes. Therefore maintaining the feasible money allocation (i.e., q;»’s)
is a challenging task. To handle this we define network N(FE,p,z) as follows: if
(i,j) € E, then put a directed edge from 4 to j with infinity capacity, cap(i,j) = cc.
Add a source node s and a sink node ¢ to the network. From s, put a directed edge to
every i € Ay with capacity cap(s,i) = 22:0 EjeCk wéakpj — z, which is equivalent

to ZL:O Zjeck wépj(ckz +di) — z, a linear equation in z. From every good j € G,
put a directed edge to t with capacity cap(j,t) = app; if g; € C. We maintain the

107f the given market is nondegenerate, then at any point during a run of the algorithm there can
be at most one tight edge without any money flow.
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TABLE 3
Combinatorial algorithm for linear utilities.

Initialize: )
pj < 1,Yj € G; ei<—2j w;p]-,ViEA; Z 4 max;c A €;;
Apg+— {i€e Al e <z} Ar = A\ Ag;  Co + G;

E«—{(i,5) € (A1 X G) | bpb; = maxyeg bpb} };
while z # 0 do
Decrease z, while maintaining I, until one of the following events occurs:
Event 1: For an ¢ € Ag e; becomes z;
A« Ay U{i}; Ag + Ao\ {i}; E < E U maximum bpb edges of i;
Event 2: A new edge (i,7) € (A1 X G) becomes tight;
B« BU{(,)}
Event 3: Flow on a nonzero edge (7, j) becomes zero;
B« B\ {(i,j)}
Event 4: An undersold good j € Cp becomes fully sold;
Co < Co \ {7}; Recompute Cp;
endwhile

following invariant in the algorithm by ensuring that cap(s,) is the money spent by
agent 7, and that goods are never oversold.
I. The cut (s,.4; UG Ut) is always a min cut in N(E,p, z).

The complete algorithm is given in Table 3.

In the proof of Lemma 8.2 we showed that out of six cases, two cases never arise.
The remaining four correspond to the four events of the algorithm. Next, we describe
how the threshold z for the four events can be efficiently computed. For Events 1
and 2 this is straightforward. To check Event 3 in any component except Cy, do the
following for every edge (i,7) € E: let S be the set of agents of components containing
j after removal of edge (i,7). Calculate z using }_,cgcap(s,i) = 3 cp(s) cap(d: 1),
where T'(S) is the set of neighbors of S in the graph formed by E. The maximum z
gives the threshold for Event 3 in components other than Cj.

In the case of Cy we observe that each of its components cannot have more than
one undersold good, i.e., goods with price 1. Otherwise, the bang-per-buck conditions
for the tight edges on the path between unit price goods give an algebraic relation
between u;'-’s7 contradicting the assumption that u}’s are generic. Further, since prices
in Cy are constant and z is decreasing, only the undersold good can consume the extra
money spent. Therefore, if flow on (7, ;) decreases to zero, then the undersold good
should be in the subcomponent containing ¢, when (7, j) is removed. In other words,
after removal of (7, 7) from E the component containing j has only fully sold goods,
and hence the same procedure applies.

Event 4 may be easily calculated using the fact that every component of Cy has
exactly one undersold good: for each of its components calculate z that clears the
market from the goods side, and pick the maximum z among them.

9. Experimental results. Table 4 summarizes the results of experiments, done
over randomly generated instances, with a MATLAB implementation of our algo-
rithm. For each choice of number of agents and goods, the total number of segments
in all the utility functions was kept the same and is denoted by #Seg in the table.

The values of u; &S ; xS, and w;’s were drawn uniformly at random from the intervals
[0,1], [0, #%eg], and [0,1], respectively. The w} values were scaled so that the total
amount of each good is unit. Finally, for each agent 7 and good 7, chreSponding u; &S
were sorted in decreasing order to get the SPLC utility function fj.



1844 J. GARG, R. MEHTA, M. SOHONI, AND V. VAZIRANI

TABLE 4
Ezxperimental results over random instances.

[ [A[ x |G| x #Seg | #Instances | Min iters | Avg iters | Max iters |

5x5x5 1000 107 142.7 199
10 x5 x5 1000 130 154.3 197
10 x 10 x 5 1000 254 321.9 401
10 x 10 x 10 50 473 515.8 569
15x 15 x5 100 413 509.7 582
15 x 15 x 10 50 775 991 1090
15 x 15 x 15 10 1197 1261.3 1382
20 X 20 X 5 10 719 764 853
20 x 20 x 10 10 1093 1208.8 1473

11

10.5

6 7 8 9 10 11 12

F1c. 1. Plot of logy (32, ; |f;\) versus log, (Maz iters).

Note that, even in the worst case the number of iterations is of the order of
the total number of segments of utility functions, i.e., 3=, ; |fj| = |A| x |G| x #Seg.
Figure 1 plots logy(3_; ; | f11) versus log,(Max iters) for a comparative analysis.

10. Discussion. Besides parity [54], the Lemke-Howson algorithm has yielded
numerous insights into structural properties of 2-Nash equilibria, such as index, de-
gree, and stability [28, 61, 54]. It has been the subject of much other work, e.g., [6]
determine its smoothed complexity, [56] and [49] give an example on which it takes
exponential time. All these issues are worth exploring for SPLC equilibria and our
algorithm as well. We note that the notion of index has already been studied for
regular markets [35, 42]; however, it uses the Hessian of the demand functions and
hence is not applicable to our case.

The question of whether any of the tracing procedures for Nash equilibrium com-
putation [58, 29, 31, 30, 38, 39, 44] can locate all the Nash equilibria of a game has
been studied extensively [3, 32, 45]. It would be interesting to determine if our algo-
rithm can locate all the equilibria of a given SPLC market by trying out all possible
coefficients vectors for the z variable.

A natural question that arises from our result is whether one can obtain a practical
algorithm for the case of nonseparable, PLC utilities via the following scheme: obtain
a rational approximation of an equilibrium that is amenable to an LCP formulation
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and a complementary pivot algorithm. Another open question, first raised in [59], is
to prove that this case is FIXP-complete; it is known to have algebraic equilibria.

An obvious approach to answering the question of [59] was to build on the work of
[15], i.e., obtain a flow-based algorithm that iteratively adjusts prices, responding to
certain min-cuts in a network analogous to the one used in [15]. To show termination
for such an algorithm, one would need a potential function that changes monotonically,
achieving its optimal value when the algorithm finds an equilibrium. However, it turns
out that as prices of goods change, the value of forced allocations changes in such a way
that it seems impossible to construct a suitable potential function. Another approach
was to generalize the work of [26], who gave a Lemke-Howson-type algorithm for the
linear case, to SPLC utilities. However, the same obstacle, i.e., changing value of
forced allocations, thwarts this attempt as well.

At present, we do not understand how our algorithm finesses the obstacle men-
tioned above. However, we believe that obtaining a combinatorial understanding of
our algorithm will clarify this. Additionally, it is likely that even in the linear case,
in practice, Faves’ and our algorithms are competitive over provably polynomial time
algorithms—experiments are needed to confirm or refute this.

The decade-long endeavor, within theoretical computer science, of understanding
the computability of market equilibria has successfully addressed almost all broad,
general classes of markets—the main exception being markets with production. Fol-
lowing up on Eaves [19], we restate the question of studying such markets.
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