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The classic Arrow-Debreu market model captures both production and consumption, two equally important
blocks of an economy, however most of the work in theoretical computer science has so far concentrated on
markets without production, i.e., the exchange economy. In this paper we show two new results on markets
with production.

Our first result gives a polynomial time algorithm for Arrow-Debreu markets under piecewise linear
concave (PLC) utilities and polyhedral production sets provided the number of goods is constant. This is the
first polynomial time result for the most general case of Arrow-Debreu markets.

Our second result gives a novel reduction from an Arrow-Debreu market M (with production firms) to
an equivalent exchange market M̃ such that the equilibria of M are in one-to-one correspondence with the
equilibria of M̃. Unlike the previous reduction by Rader [Rader 1964] where M̃ is artificially constructed,
our reduction gives an explicit market M̃ and we also get: (i) when M has concave utilities and convex
production sets (standard assumption in Arrow-Debreu markets [Arrow and Debreu 1954]), then M̃ has
concave utilities, (ii) when M has PLC utilities and polyhedral production sets, then M̃ has PLC utilities,
and (iii) when M has nested CES-Leontief utilities and nested CES-Leontief production, then M̃ has nested
CES-Leontief utilities.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity

Additional Key Words and Phrases: Market equilibrium; Piecewise linear concave utilities

1. INTRODUCTION
The classic Arrow-Debreu market model [Arrow and Debreu 1954] is one of the most
fundamental and extensively studied model within mathematical economics. It cap-
tures both production and consumption, two equally important blocks of an economy
and it consists of a set of agents, a set of goods, and a set of production firms. Each
agent has an initial endowment of goods and a utility (preference) function over bun-
dle of goods, and each firm has a set of production capabilities to produce a set of goods
using a set of raw goods. Agents have profit shares in firms. Given prices of goods, each
firm operates at a profit maximizing plan, and each agent buys a most preferred bundle
that is affordable from the earned money. At equilibrium, market clears, i.e., demand
meets supply. An economy without production firms is called an exchange market.

In economics, it is customary to assume that utility functions are concave, and pro-
duction sets are convex. Since we are in a finite precision model of computation, we
will assume that utility functions are piecewise-linear and concave (PLC) and produc-
tion sets are polyhedral. Clearly by making the pieces fine enough, the approximation
to the original utilities and production sets can be made as good as needed. In a cel-
ebrated result, Arrow and Debreu [Arrow and Debreu 1954] showed the existence of
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equilibrium for a very general class of markets using Kakutani fixed point theorem
(highly non-constructive). This was followed by attempts at finding algorithms that
compute market equilibria; especially worth mentioning are algorithms of Scarf [Scarf
1967] and Smale [Smale 1976] to find approximate fixed points. Although these algo-
rithms are known to perform well in practice, and have found important applications,
they may take exponential time in the worst case.

A systematic study within theoretical computer science in last thirteen years has
led to many remarkable algorithmic and complexity theoretic results for computing
equilibria. In the beginning, polynomial time algorithms were obtained for exchange
markets with linear utilities [Devanur et al. 2008; Jain 2007; Ye 2008; Orlin 2010;
Vegh 2012; Duan and Mehlhorn 2013]1and for certain other cases [Codenotti et al.
2005; Jain and Varadarajan 2006; Devanur and Kannan 2008]. Then for general util-
ity functions Separable PLC (SPLC) and PLC, the complexity of computing an equi-
librium was shown to be PPAD-complete [Chen et al. 2009; Vazirani and Yannakakis
2011; Chen and Teng 2009], and FIXP-complete [Garg et al. 2014a; Garg et al. 2014b]
respectively. It is unlikely that a polynomial time algorithm exists for these markets.

For markets with production, [Jain and Varadarajan 2006] gave a polynomial time
algorithm for production and utility functions coming from a subclass of nested CES
(constant elasticity of substitution) functions. We note that these production functions
are constant returns to scale, and they are relatively easy to deal with since there is no
positive profit to any firm at an equilibrium. For more general functions, equilibrium
computation in markets with SPLC utilities and SPLC production is PPAD-complete
[Chen et al. 2009; Garg and Vazirani 2014] and for PLC utilities and polyhedral pro-
duction sets, it is FIXP-complete [Garg et al. 2014a; Garg et al. 2014b]. We note that
SPLC production set is a special subcase of polyhedral production set. [Garg and Vazi-
rani 2014] also gave a polynomial time algorithm for markets with SPLC utilities and
SPLC production, when either the number of goods or the number of agents and firms
is constant.

In this paper, we show two new results. Our first result gives a polynomial time algo-
rithm for computing an equilibrium in Arrow-Debreu markets with PLC utilities and
polyhedral production sets provided the number of goods is constant. This is the first
polynomial time result for the most general case of Arrow-Debreu markets. We build
on the construction of [Devanur and Kannan 2008], which uses the cell decomposition
and LP duality techniques in a remarkable way, and gives a polynomial time algorithm
for exchange markets (without production) with PLC utilities provided the number of
goods is constant.

Our second result gives a novel reduction from an Arrow-Debreu market M (with
production firms) to an equivalent exchange market M̃ such that the equilibria ofM
are in one-to-one correspondence with the equilibria of M̃. Earlier, Rader [Rader 1964]
gave such a reduction (called Principle of Equivalence) for a slightly different market
setting (see Section 4.2 for details), where utility functions of agents in the reduced
market M̃ are optimization problems over production constraints of firms. These are
“artificially constructed”, i.e., they are not in the standard form since variables can
take negative values and therefore do not correspond to consumption of goods. In con-
trast, our reduction is quite different and we construct explicit utility function for each
agent in M̃ which are defined over amount of the goods consumed in M̃. Further, if

—M has concave utilities and convex production sets (standard assumption in Arrow-
Debreu markets [Arrow and Debreu 1954]), then M̃ has concave utilities.

1Some of these are for Fisher markets [Brainard and Scarf 2000], a special case of exchange economy.



—M has PLC utilities and polyhedral production sets, then M̃ has PLC utilities.
—M has nested CES-Leontief utilities and nested CES-Leontief production, then M̃

has nested CES-Leontief utilities. We note that these are one of the most widely
used functions to model both production and consumption in applied general equilib-
rium [Shoven and Whalley 1992; de La Grandville 2009]. Also the popular modeling
language MPSGE [Rutherford 1999] uses these functions to model production and
consumption for equilibrium analysis.

Our reduction is simple and efficient, where all parameters of M̃ can be obtained in
linear time from M. Further, it does not subsume our first result, because we create
one new good in M̃ for each firm inM, hence it gives a polynomial time algorithm us-
ing [Devanur and Kannan 2008] only when both the number of goods and the number
of firms are constant.

In general Arrow-Debreu markets are considered harder to analyze than exchange
markets, due to the complexities introduced by firms. This is evident from the dispar-
ity in the amount of work done on exchange markets and on Arrow-Debreu markets.
Our reduction is contrary to these beliefs and can be utilized in understanding
Arrow-Debreu markets better using the known results for exchange markets. Various
structural results have been extended to the general economy [Sonnenschein 1973;
Mas-Colell 1991] from pure exchange using Rader’s implicit reduction. Our explicit
reduction, in addition, facilitates equivalent description of utility function for a given
production set. Using this we can extend computational as well as structural results
for exchange market with specific utility functions to general markets with specific
production functions.

Technical Details. For the first result, we need to capture: (i) optimal production
schedules of each firm, (ii) optimal bundles of each agent, and (iii) market clearing
conditions. In comparison with exchange markets, we not only have one additional
task of handling optimal production schedule of each firm, but also now agents optimal
bundles depend on the profit earned by firms because they own a share of that profit.
Hence the construction of [Devanur and Kannan 2008], which captures agents optimal
bundles, needs to be appropriately extended. And clearly market clearing conditions
need to handle the fact that amount of goods available is not a constant anymore and
depends on the production.

Essentially like in [Devanur and Kannan 2008], we will partition the price space
with a set of hyperplanes/polynomial surfaces, and then in each cell of the partition,
we will check if there is a price vector which gives an equilibrium. Since the number
of goods is constant, price space is constant dimensional and we put polynomial many
hyperplanes/polynomial surfaces, which partition the space into polynomially many
non-empty cells and for each cell we construct a polynomial time query. Hence we get
a polynomial time algorithm.

As discussed above, we cannot directly capture optimal bundles of agents because
the budget constraints depend on the profit earned by firms and profit depends on the
production schedules used by firms. If we introduce variables for the produced and
used goods of firms optimization programs, then there will be too many variables (as
number of firms need not be a constant) and above all, these variables will be common
to both agents and firms optimization programs. To overcome these difficulties, first we
partition the price space with hyperplanes obtained from firms optimization programs,
where each cell in the partition captures the set of optimal production schedules of each
firm and in turn their profit as a linear function in price variables.

Using the profit earned by each firm in a particular cell, we next capture the agents
optimal bundles by further partitioning this cell into subcells, using a similar construc-



tion as in [Devanur and Kannan 2008], where each subcell has information about the
optimal bundles of each agent. Next we need to check if this subcell also satisfy mar-
ket clearing conditions. Note that unlike in exchange, the amount of goods available to
agents is not a constant anymore due to production. We use a novel application of LP
duality to ensure that production is accounted for in market clearing. Using this, we
further partition the price space, and finally we obtain a polynomial time query to be
checked in each cell.

The reduction of the second result maps agents and goods of M into agents and
goods of M̃. For each firm in M, it creates a new agent and a new good in M̃. The
initial endowment and utility function of each new agent is set in such a way so that
it functions exactly like the corresponding firm in M. One possibility is that agents
consume the raw goods, and bring the produced good as part of the initial endowment
to sell in the market. One problem is how to produce variable amount of a good from a
fixed endowment. Another major difficulty is to convert the production set, which is a
correspondence, into a utility function. And the third is to transfer profit of a firm from
its agent to another agent, which we do by adding an extra good whose price captures
the profit. We note that equilibria ofM is just a projection of the equilibria of M̃.

2. THE ARROW-DEBREU MARKET MODEL
The Arrow-Debreu market [Arrow and Debreu 1954] consists of a set G of divisible
goods, a set A of agents and a set F of firms. Let m def

= |A|, n def
= |G| and l def

= |F|.
The production capabilities of a firm is defined by a set of production schedules. If

a firm can produce a bundle xp of goods using bundle xr as raw material, then such
a production schedule defines a production possibility vector (PPV) (xp − xr). The set
of PPVs of a firm determines its production capabilities. Let Sf ∈ Rn denote the PPV
set of firm f . Following are the standard and natural assumptions on Sf [Arrow and
Debreu 1954].

(1) Set Sf is closed and convex, and contains the origin.
(2) The set of produced goods and raw goods of a firm are disjoint. Define Rf def

= {j ∈
G | vj < 0, v ∈ Sf} to be the set of raw goods and Pf def

= {j ∈ G | vj > 0, v ∈ Sf} to
be the set of produced goods, then Rf ∩ Pf = ∅.

(3) Downward close - Adding to raw material does not decrease the production, i.e., if
v ∈ Sf , and w ≤ v, while wj ≥ 0,∀j ∈ Pf then w ∈ Sf .

(4) No production out of nothing - {⊕f∈FSf} ∩ Rn
+ = 0.

The goal of a firm is to produce as per a profit maximizing (optimal) schedule.
Firms are owned by agents: Θi

f is the profit share of agent i in firm f such that
∀f ∈ F ,

∑
i∈AΘi

f = 1.
Each agent i comes with an initial endowment of goods; W i

j is amount of good j
with agent i. The preference of agent i is given by a utility function ui : Rn

+ → R+.
Each agent wants to buy a (optimal) bundle of goods that maximizes her utility to the
extent allowed by her earned money – from initial endowment and profit shares in the
firms.

Let p ∈ Rn denote the prices of goods, where pj is price of good j. Given p, letOPT i(p)
and OPT f (p) respectively denote the set of optimal bundles of agent i and the set of
optimal production schedules of firm f . Let xi ∈ Rn denote the assignment of goods to
agent i. Let (xf,r,xf,p) ∈ (Rf ,Pf ) denote the assignment of raw and produced goods
to firm f such that (xf,p − xf,r) ∈ Sf .



If there is an assignment xi ∈ OPT i(p) for each agent i, and (xf,r,xf,p) ∈ OPT f (p)
for each firm f so that there is neither deficiency nor surplus of any good, then such
prices are called market clearing or market equilibrium prices. Let x = {xi,xf,r,xf,p :
i ∈ A, f ∈ F} denote an assignment of the market. Formally,

Definition 2.1 (Market Equilibrium). Given an Arrow-Debreu market M, (x,p) is
an equilibrium of M if xi ∈ OPT i(p),∀i ∈ A, (xf,r,xf,p) ∈ OPT f (p),∀f ∈ F and
market clears, i.e.,

∑
i∈A x

i
j +

∑
f∈F x

f,r
j ≤

∑
i∈AW

i
j +

∑
f∈F x

f,p
j ,∀j ∈ G.

The market equilibrium problem is to find such prices when they exist. In a cele-
brated result, Arrow and Debreu [Arrow and Debreu 1954] proved that market equilib-
rium always exists under some mild conditions, however the proof is non-constructive
and uses heavy machinery of Kakutani fixed point theorem. A well studied restriction
of Arrow-Debreu model is exchange economy, i.e., markets without production firms.

In economics, it is customary to assume that utility functions are concave, and
production sets are convex. Since we are in a finite precision model of computation, we
will assume that utility functions are piecewise-linear concave (PLC) and production
sets are polyhedral. Clearly by making the pieces fine enough, the approximation to
the original utilities and production sets can be made as good as needed.

Polyhedral production sets. Each firm has a production technology to produce a set
of goods from a set of different raw goods. The polyhedral production set of firm f can
be described as ∑

j∈Pf

Df
jkx

f,p
j ≤

∑
j∈Rf

Cf
jkx

f,r
j + T f

k , ∀k,

where Df
jk ’s, Cf

jk ’s and T f
k ’s are given non-negative rational numbers, and xf,pj and xf,rj

denote the amount of good j produced and used respectively. The variables xf,pj and
xf,rj are respectively defined only for those goods j which can be produced and used by
firm f .

Given prices p, firm f ’s profit maximizing plan is a solution of the following linear
program (LP):

max
∑
j∈Pf

pjx
f,p
j +

∑
j∈Rf

pjx
f,r
j∑

j∈Pf

Df
jkx

f,p
j ≤ −

∑
j∈Rf

Cf
jkx

f,r
j + T f

k , ∀k

xf,pj ≥ 0, xf,rj ≤ 0

(1)

Remark 2.2. Note that we use non-positive (instead of non-negative) variables to
capture amount of raw goods in the above program, which is different from the earlier
work [Garg et al. 2014a]. This is crucial in getting the polynomial time algorithm later
because now the inner product of every feasible point with the price vector captures
the profit at that point.

PLC utilities. The PLC utility function ui : Rn
+ → R+ of agent i can be described as

ui(x
i) = min

k
{
∑
j

U i
jkx

i
j + T i

k},



where U i
jk ’s and T i

k ’s are given non-negative rational numbers. Given prices p, agent
i’s optimal bundle is a solution of the following linear program (LP), where φf captures
the profit of firm f :

maxui

ui ≤
∑
j

U i
jkx

i
j + T i

k, ∀k∑
j

xijpj ≤
∑
j

W i
jpj +

∑
f

Θi
fφ

f

xij ≥ 0, ∀j ∈ G

(2)

3. A POLYNOMIAL TIME ALGORITHM
In this section, we describe a polynomial time algorithm for computing a market equi-
librium in Arrow-Debreu markets with piecewise linear concave (PLC) utilities and
polyhedral production sets provided the number of goods is constant. We build on the
construction of [Devanur and Kannan 2008], which gives a polynomial time algorithm
for exchange markets (without production) with PLC utilities provided the number of
goods is constant. We need to capture: (i) optimal production schedules of each firm,
(ii) optimal bundles of each agent, and (iii) market clearing conditions. In compari-
son with exchange markets, we not only have one additional task of handling optimal
production schedule of each firm, but also now agents optimal bundles depend on the
profit earned by firms because they own a share of that profit. Hence the construc-
tion of [Devanur and Kannan 2008], which captures agents optimal bundles, needs
to be appropriately extended. And clearly market clearing conditions need to handle
the fact that amount of goods available is not a constant anymore and depends on the
production.

Essentially like in [Devanur and Kannan 2008], we will partition the price space
with a set of hyperplanes/polynomial surfaces, and then in each cell of the partition,
we will check if there is a price vector which gives an equilibrium. Since the number
of goods is constant, price space is constant dimensional and we put polynomial many
hyperplanes/polynomial surfaces, which partition the space into polynomially many
non-empty cells and for each cell we construct a polynomial time query. Hence we get
a polynomial time algorithm.

As discussed above, we cannot directly capture the agents optimal bundles because
the budget constraints depend on the profit earned by firms and profit depends on the
production schedules used by firms. If we introduce variables for the produced and
used goods in the agent’s optimization program, then there will be too many variables
(as number of firms need not be a constant) and above all, these variables will be com-
mon to both agents and firms optimization programs. To overcome these difficulties,
first we partition the price space with hyperplanes obtained from firms optimization
programs, where each cell in the partition captures the set of optimal production sched-
ules of each firm and in turn their profit as a linear function in price variables. Using
the profit earned by each firm in a particular cell, we next capture the agents optimal
bundles by further partitioning this cell into subcells, using a similar construction as
in [Devanur and Kannan 2008], where each subcell has information about the opti-
mal bundles of each agent. Next we check if this subcell also satisfy market clearing
conditions, for which we generalize the [Devanur and Kannan 2008] construction, and
finally we obtain a polynomial time query as in Theorem A.2 to check in each subcell.

Next we describe each step in detail:



Step 1 (Optimal production schedule). Recall that the optimal production schedule of
firm f is given by the following optimization program:

max
∑
j∈Pf

pjx
f,p
j +

∑
j∈Rf

pjx
f,r
j∑

j∈Pf

Df
jkx

f,p
j ≤ −

∑
j∈Rf

Cf
jkx

f,r
j + T f

k , ∀k

xf,pj ≥ 0, xf,rj ≤ 0

(3)

Note that the feasible set is independent of prices, and the variables corresponding to
the amount of raw goods are intentionally chosen to be non-positive (see Remark 2.2),
which is crucial for the algorithm – it will later help us in capturing profit. Further
without loss of generality we may assume that it is a full dimensional polytope, say
P, and no constraint is redundant. At any given prices, the set of optimal production
schedules will be convex hull of a set of vertices of P. We are interested in the reverse
question: Given a vertex v of P, at what prices v is an optimal production plan for firm
f? To answer this, we partition the price space by the following set of hyperplanes for
every two vertices v and v′ of P,

p.v = p.v′.

For each cell in this partition, one can identify the set of optimal production schedules,
Qf for each firm f , (i.e., convex hull of all the vertices which are optimal). From this,
we can also deduce how much profit each firm makes in this particular cell as a linear
function of prices. For an equilibrium in this cell, next we want to check if a price
vector here also gives an optimal bundle to each agent so that market clears.

Step 2 (Optimal bundle). Recall the optimal bundle of agent i is given by the following
optimization program:

maxui

ui ≤
∑
j

U i
jkx

i
j + T i

k, ∀k∑
j

xijpj =
∑
j

W i
jpj +

∑
f

Θi
fφ

f

xij ≥ 0, ∀j ∈ G

(4)

Here the budget constraint requires the profit obtained by each firm f . We substitute
φf by the corresponding profit of the cell in Step 1, and make this constraint indepen-
dent of the production. Now we use the construction of [Devanur and Kannan 2008]
with the modified budget constraint and obtain the hyperplanes, Qi for each agent i,
to further partition this cell into subcells. For the sake of completeness, we give its
details in Appendix B.

Now given a subcell, we have a polytope Qf capturing optimal production schedules
of each firm f , and a polytope Q̂i = Qi ∩ {

∑
j x

i
jpj =

∑
j W

i
jpj +

∑
f Θi

fφ
f} capturing

optimal bundles of each agent i. Next we need to check if ∃(xf,r,xf,p) ∈ Qf ,∀f ∈ F
and ∃xi ∈ Q̂i,∀i ∈ A so that market clears.

Step 3 (Market clearing). There are two main difficulties here: Q̂i depends on prices
and the total number of variables (search space) is mn+nl, which is very large. Both of
these are also faced by [Devanur and Kannan 2008] and we extend their construction



to handle these. For the second, we use LP duality to reduce the dimension of search
space.

LEMMA 3.1 ([DEVANUR AND KANNAN 2008], EXTENDED). Given polytopes Qf for
each firm f and Q̂i for each agent i, ∃(xf,r,xf,p) ∈ Qf ,xi ∈ Q̂i such that

∑
i x

i
j −∑

f x
f,r
j = 1 +

∑
f x

f,p
j ,∀j ∈ G if and only if ∀q ∈ Rn,

∑
j qj ≤

∑
i maxxi∈Q̂i q.xi −∑

f min(xf,r,xf,p)∈Qf (q.xf,r + q.xf,p).

PROOF. Suppose there exists x̌i ∈ Q̂i and (x̌f,r, x̌f,p) ∈ Qf such that market clears,
i.e.,

∑
i x̌

i
j −

∑
f x̌

f,r
j = 1 +

∑
f x̌

f,p
j ,∀j ∈ G then we have

q.1 = q.(
∑
i

x̌i −
∑
f

(x̌f,r + x̌f,p)) ≤
∑
i

max
xi∈Q̂i

q.xi −
∑
f

min
(xf,r,xf,p)∈Qf

(q.xf,r + q.xf,p)

For the other direction, consider the set P = {y ∈ Rn | y =
∑

i x
i −

∑
f (xf,r +

xf,p), xi ∈ Q̂i, (xf,r,xf,p) ∈ Qf}. Using LP duality, if 1 6∈ P implies that there exists
q ∈ Rn and w ∈ R such that q.1 > w and q.y ≤ w,∀y ∈ P. Using this, we get

q.1 > max
y∈P

q.y =
∑
i

max
xi∈Q̂i

q.xi −
∑
f

min
(xf,r,xf,p)∈Qf

(q.xf,r + q.xf,p).

Next we use the above lemma to capture market clearing. Essentially, we will parti-
tion the (p, q) space (R2n) by a set of hyperplanes so that for each cell in the partition,
we can obtain both min(xf,r,xf,p)∈Qf (q.xf,r + q.xf,p),∀f and maxxi∈Q̂i q.xi,∀i at some
particular vertices, say vi∗ and vf∗ , of the respective polytopes and that depends only on
the cell.

Recall that Qf is independent of price variables and we partition the (p, q) space
(R2n) by the following set of hyperplanes for every two vertices vf and v̂f of Qf :

q.vf = q.v̂f .

Now consider Q̂i = Qi ∩ {
∑

j x
i
jpj =

∑
j W

i
jpj +

∑
f Θi

fφ
f}, where Qi is independent

of the prices. A vertex of Q̂i is a solution of n linearly independent equations and
one of them is

∑
j x

i
jpj =

∑
j W

i
jpj +

∑
f Θi

fφ
f , so each coordinate of a vertex of Q̂i

may be written as a ratio, whose numerator is independent of price variables p and
denominator is a linear function of p. Next partition the (p, q) space by the following
set of hyperplanes for every two vertices vi and v̂i of Q̂i:

q.vi = q.v̂i.

Note that each of these equations is a polynomial of degree n + 1 in variables (p, q).
Given a cell in this partition, we can easily determine the vertices vi∗ and vf∗ taking
the maximum and minimum value respectively.

Step 4 (Final query). For each cell, we need to solve the following problem:

∃?p : ∀q,
∑
j

qj ≤
∑
i

q.vi∗ −
∑
f

q.vf∗ .

From the above analysis, it is clear that this is a polynomial inequality after clearing
the denominator and Theorem A.2 is directly applicable.



4. PRODUCTION TO EXCHANGE
In this section, we give a general reduction from an Arrow-Debreu (AD) market (in-
cluding production) M to an exchange market M̃. Recall that M consists of a set of
agents, a set of goods, and a set of firms. The idea is to replace each firm in M by a
new agent in M̃ which exactly behaves like the corresponding firm.

Recall thatRf and Pf respectively denote the set of raw and produced goods for firm
f , and these two sets are disjoint. For simplicity, first we describe the reduction when
production capabilities of each firm f is given by a function F f : R|R

f |
+ → R|P

f |
+ , where

F f (xf,r) = {F f
j (xf,r) : j ∈ Pf} for a bundle xf,r of raw goods. Let xf,p denote the

bundle of produced good, where xf,pj = F f
j (xf,r),∀j ∈ Pf . Let ∆ denote the maximum

quantity of any good that can be produced inM. Since total initial endowment of each
good is finite and no production out of nothing, ∆ is finite2.

Given an AD marketM, construct M̃ as in Table I. Consider the one-to-one mapping
between equilibria ofM and M̃ as in Table II, where φf captures the profit of firm f .

Table I. Reduction from an AD market M to an exchange market M̃

M = (A,G,F) with (W,U,Θ, F ), m def
= |A|, n def

= |G|, l def
= |F|

(Each agent is indexed by i ∈ [m], good by j ∈ [n], and firm by f ∈ [l])
W i

j : Endowment of good j with agent i
Θi

f : Profit share of agent i in firm f
ui : Rn

+ → R+ : Utility function of agent i
F f (xr) : R|R

f |
+ → R|P

f |
+ : Production function of firm f

M̃ = (Ã, G̃) with (W̃ , Ũ), |Ã| = m+ l, |G̃| = n+ l

Ã = {i | i ∈ A} ∪ {m+ f | f ∈ F}
G̃ = {j | j ∈ G} ∪ {n+ f | f ∈ F}

W̃ i
j =



{
W i

j if j ≤ n
Θi

f if j = n+ f
if i ≤ m

{
∆ if j ∈ Pf

0 Otherwise if i > m

ũi : Rn+l
+ → R+: Utility function of agent i in M̃

x̃i ∈ Rn+l
+ , x̃i

|G = {x̃ij : j ∈ G} and x̃i
|Rf

= {x̃ij : j ∈ Rf}

ũi(x̃
i) =


ui(x̃

i
|G ) if i ≤ m

min

{
F f
j (x̃i

|Rf
) + x̃ij , j ∈ Pf

∆x̃in+f

}
if i = m+ f

2In case of PLC markets, bit length of ∆ is polynomial in the size of input and can be computed in polynomial
time [Garg et al. 2014a].



Table II. One-to-one mapping between equilibria of M and M̃

M ←→ M̃
(x,p) ←→ (x̃, p̃)

(x,p) −→ (x̃, p̃) (x̃, p̃) −→ (x,p)

x̃ij =



{
xij if j ≤ n
0 if j > n

if i ≤ m

 xf,rj if j ∈ Rf

∆− xf,pj if j ∈ Pf

1 if j = n+ f

if i = m+ f

φf =
∑

j∈Pf x
f,p
j pj −

∑
j∈Rf x

f,r
j pj

p̃j =

{
pj if j ≤ n
φf if j = n+ f

xij = x̃ij

xf,rj = x̃m+f
j

xf,pj = ∆− x̃m+f
j

pj = p̃j

LEMMA 4.1. If (x,p) is an equilibrium for M, then (x̃, p̃), as per Table II, is an
equilibrium for M̃.

PROOF. We need to show that x̃ gives an optimal bundle to each agent in M̃ at
prices p̃ and market clears. For this, first consider an agent i ≤ m of M̃, whose budget
at prices p̃ is ∑

j

W i
jpj +

∑
f

Θi
fφ

f .

This is same as the budget of agent i inM at prices p. Since utility function of agent
i ≤ m of M̃ is same as the utility function of agent i in M, i.e., no utility from goods
j > n, x̃ gives an optimal bundle to agent i at prices p̃.

Next consider an agent i = m+ f of M̃. At x̃, it gets ∆ units of utility. Suppose there
is another bundle, say x̂i, which gives more utility than ∆, then we have

F f
j (x̂i

|Rf
) + x̂ij > ∆, ∀j ∈ Pf

x̂in+f > 1
(5)

Further, x̂i must also satisfy budget constraint, which is∑
j∈Rf

x̂ij p̃j +
∑
j∈Pf

x̂ij p̃j + x̂in+f p̃n+f ≤ ∆
∑
j∈Pf

p̃j

Using (5) and substituting p̃ from Table II, we have

φf ≤ x̂in+fφ
f ≤

∑
j∈Pf

(∆− x̂ij)pj −
∑
j∈Rf

x̂ijpj <
∑
j∈Pf

F f
j (x̂i

|Rf
)pj −

∑
j∈Rf

x̂ijpj



This implies that firm f inM can earn more profit using the bundle x̂i rather than
xf at prices p, which is a contradiction. Further, it is easy to verify that each agent
satisfies the budget constraint at (x̃, p̃). Therefore, x̃ gives an optimal bundle to each
agent at prices p̃. For market clearing, we need to show that

∀j :

m+l∑
i=1

x̃ij =

m+l∑
i=1

W i
j .

For j ≤ n, it is
m∑
i=1

xij +
∑

∀f :j∈Rf

xf,rj +
∑

∀f :j∈Pf

∆−
∑

∀f :j∈Pf

xf,pj =

m∑
i=1

W i
j +

∑
∀f :j∈Pf

∆

For j > n, it is

1 =
m∑
i=1

Θi
j−n,

which follows from the market clearing at x inM.

LEMMA 4.2. If (x̃, p̃) is an equilibrium for M̃, then (x,p), as per Table II, is an
equilibrium forM.

PROOF. At p, xi = x̃i is an optimal bundle for agent i because utility function ui(.) =
ũi(.) for i ≤ m, pj = p̃j for j ≤ n and the budget

∑
j W

i
jpj +

∑
f Θi

fφ
f is same in bothM

and M̃. Next we show that (xf,r,xf,p) gives an optimal production schedule for firm f

at prices p. Suppose there is another schedule (x̂f,r, x̂f,p = F f (x̂f,r)) at prices p, which
is more profitable than (xf,r,xf,p). Then, we have∑

j∈Pf

xf,pj pj −
∑
j∈Rf

xf,rj pj <
∑
j∈Pf

x̂f,pj pj −
∑
j∈Rf

x̂f,rj pj

Using Table II, we get∑
j∈Pf

(∆− x̃m+f
j )pj −

∑
j∈Rf

x̃m+f
j pj <

∑
j∈Pf

x̂f,pj pj −
∑
j∈Rf

x̂f,rj pj

∑
j∈Pf

(∆− x̂f,pj )pj +
∑
j∈Rf

x̂f,rj pj <
∑
j∈Pf

x̃m+f
j pj +

∑
j∈Rf

x̃m+f
j pj ,

which implies that the bundle (x̂f,rj ,∀j ∈ Rf ; (∆ − x̂f,pj ),∀j ∈ Pf ) and 1 unit of good
m+ f also gives ∆ units of utility to agent m+ f at prices p̃, and it is cheaper than the
bundle x̃m+f . Therefore, agent m+ f can earn more than ∆ units of utility at prices p̃,
which is a contradiction since x̃m+f is an optimal bundle at prices p̃. Further, market
clearing inM easily follows from the market clearing in M̃.

The next theorem easily follows from the construction.

THEOREM 4.3. The reduction of Table I reduces an Arrow-Debreu market with
nested CES-Leontief utilities and nested CES-Leontief production to an equivalent ex-
change market with nested CES-Leontief utilities.



4.1. Production: A correspondence

In general, production capabilities of a firm f is given by a correspondence F f : R|R
f |

+ ⇒

R|P
f |

+ . In this section, we extend the reduction of Section 4 to this case. Earlier, when it
was a function then there was a unique bundle of produced goods, that can be produced
from a given bundle of raw goods. Now it is a multiset and hence there is a choice. In
this case, from a given bundle of raw goods, the firm chooses a bundle, among all
choices, which maximizes its profit. Let xf,r denote a bundle of raw goods, and let
xf,p ∈ F f (xf,r) denote the bundle of produced good, which maximizes f ’s profit.

The reduction of Table I is modified in Table III to handle this case. Note that only
the utility function of agents in M̃ has been modified. Also observe that when the
correspondence F f is a function then it exactly matches with Table I.

Table III. Reduction from AD market to exchange market

M = (A,G,F) with (W,U,Θ, F ), m = |A|, n = |G|, l = |F|
(Each agent is indexed by i ∈ [m], good by j ∈ [n], and firm by f ∈ [l])
W i

j : Endowment of good j with agent i
Θi

f : Profit share of agent i in firm f
ui : Rn

+ → R+ : Utility function of agent i
F f (xr) : R|R

f |
+ ⇒ R|P

f |
+ : Production correspondence of firm f

M̃ = (Ã, G̃) with (W̃ , Ũ), |Ã| = m+ l, |G̃| = n+ l

G̃ = {j | j ∈ G} ∪ {n+ f | f ∈ F}
Ã = {i | i ∈ A} ∪ {m+ f | f ∈ F}

W̃ i
j =



{
W i

j if j ≤ n
Θi

f if j = n+ f
if i ≤ m

{
∆ if j ∈ Pf

0 Otherwise if i > m

Ũi : Rn+l
+ → R+: Utility function of agent i in M̃

x̃i ∈ Rn+l
+ , x̃i

|G = {x̃ij : j ∈ G} and x̃i
|Rf

= {x̃ij : j ∈ Rf}

Ũi(x̃
i) =


ui(x̃

i
|G ) if i ≤ m

min


max

ỹi∈F f (x̃i

|Rf
)

min
j∈Pf

{
ỹij + x̃ij

}
∆x̃in+f

 if i = m+ f

The one-to-one mapping between equilibria ofM and M̃ remains same as in Table
II. The proof of correctness is essentially same as Lemmas 4.1 and 4.2. Next we show
that the utility function of newly created agents of M̃, corresponding to firms of M̃, in
Table III is not arbitrary, but concave.

LEMMA 4.4. The utility function of each agent i > m, defined by Ũi(x̃) in Table III,
is concave when the set of production capabilities, defined by the correspondence F f , is
convex.



PROOF. Let x1 and x2 be two bundles of goods in Rn+l
+ . We need to show that

ui(λx
1 + (1− λ)x2) ≥ λui(x1) + (1− λ)ui(x

2),∀λ ∈ [0, 1],∀i > m.

Consider an agent i = m + f . Let g(x) = maxy∈F f (x|Rf
) minj∈Pf {yj + xj}. Let yk ∈

F f (xk
|Rf

) for k = 1, 2 be the bundle picked in g(x1) and g(x2) respectively, and let
g(xk) = ykjk +xkjk for k = 1, 2. Since the production capabilities of firm f is a convex set,
we have

λy1 + (1− λ)y2 ∈ F f (λx1 + (1− λ)x2) (6)

Let y be the bundles picked in g(λx1 + (1 − λ)x2) and yj + xj = g(λx1 + (1 − λ)x2),
where xj = λx1j + (1− λ)x2j . So we have

ui(x
k) = min{ykjk + xkjk ,∆x

k
n+f}, for k = 1, 2, and

ui(λx
1 + (1− λ)x2) = min{yj + xj ,∆(λx1n+f + (1− λ)x2n+f )}.

Since g(x) picks the minimum coordinate value, we have

ykj + xkj ≥ ykjk + xkjk , for k = 1, 2 (7)

Using (6) and (7), we get

yj + xj ≥ λy1j + (1− λ)y2j + xj

= λ(y1j + x1j ) + (1− λ)(y2j + x2j )

≥ λ(y1j1 + x1j1) + (1− λ)(y2j2 + x2j2)

This implies that

ui(λx
1 + (1− λ)x2) ≥ min{λ(y1j1 + x1j1) + (1− λ)(y2j2 + x2j2),∆(λx1n+f + (1− λ)x2n+f )}

≥ λmin{y1j1 + x1j1 ,∆x
1
n+f}+ (1− λ) min{y2j2 + x2j2 ,∆x

2
n+f}

= λui(x
1) + (1− λ)ui(x

2)

THEOREM 4.5. An Arrow-Debreu market M with piecewise-linear concave (PLC)
utilities and polyhedral production set reduces to an exchange market M̃ with PLC
utilities.

PROOF. We need to show that utility function of each agent i = m+f , corresponding
to firm f , in M̃ is PLC. Let ui(.) be the utility function of agent i. It is easy to check
that ui(xi), defined in Table III, is the solution of following linear program (LP):

maxui

ui ≤ ∆xin+f

ui ≤ xij + yij , ∀j ∈ Pf∑
j∈Pf

Df
jky

i
j ≤

∑
j∈Rf

Cf
jkx

i
j + T f

k , ∀k

xij ≥ 0, ∀j
yij ≥ 0, ∀j ∈ Pf

(8)



Note that the feasible region of (8) is a polyhedral set in (ui,x
i,yi). The projection of

it onto (ui,x
i) is again a polyhedral set and its boundary gives the value of ui(xi) for

the associated xi. Therefore, it is a PLC function.

4.2. Rader’s reduction
Rader [Rader 1964] considered the following market setting: Agent i has W i

j amount
of good j as an initial endowment and a production capabilities set Y i. Each agent i
has a utility function ui over consumption of goods. Let xii′j is the amount of good j,
agent i trades with agent i′, where xii′j < 0 means good is received by i and xii′j > 0

means good is received by i′. When there is no production, then the net consumption
of i is zi = W i +

∑
i′ x

i
i′ , where zi is required to be non-negative.

In case of production, let yi ∈ Y i, where negative coordinate means raw good and
positive coordinate means produced good. He proposed the following induced utility
function ui∗:

ui∗(z
i) = max

yi∈Y i s.t. zi+yi≥0
ui(zi + yi).

This is a nice reduction (also called Principle of Equivalence) which preserves
concavity and monotonicity of utility function given that the production capabil-
ities set is convex. However as Rader said, these utility functions are “of course
artificially constructed” since they are not in any standard form, and moreover
they are defined on variables which can take negative values and are not even
related to the amount of goods agents consume in the market. Further we note that
market clearing conditions and budget constraints are different in this market setting.
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APPENDIX
A. RESULTS FROM COMPUTATIONAL ALGEBRAIC GEOMETRY
A set of degree d polynomials q1, . . . , qM ∈ R[x1, . . . , xn] partition the space into cells,
where each cell is defined by the sign assignment σ ∈ {0, 1,−1}M to the polynomials.
A basic fact about these cells is:

THEOREM A.1 ([BASU ET AL. 2004]). The number of non-empty cells and the time
required to enumerate them is O(Mn+1)dO(n).

Further, given a particular sign assignment σ ∈ {0, 1,−1}M , one can check if there is
an x ∈ Rn such that sign(q1(x), . . . , qM (x)) = σ (and output if there is one) by enumer-
ating over all the non-empty cells. Moreover, when the total number of variables are
constant, a more general problem, which has an existential and a universal quantifier,
can be solved as in the following theorem:

THEOREM A.2 ([BASU ET AL. 1996]). Given a set of degree d polynomials
q1, . . . , qM ∈ R[x1, . . . , xn, y1, . . . , yn] and a sign assignment σ ∈ {0, 1,−1}M ,
the time required to check if there exists an x ∈ Rn such that ∀y ∈
Rn, sign(q1(x,y), . . . , qM (x,y)) = σ, and output one if exists, is O(M (n+1)2)dO(n2).

B. PROCEDURE FOR OPTIMAL BUNDLES
In this section, we summarize the procedure for optimal bundles given in [Devanur
and Kannan 2008]. Recall that the optimal bundle of agent i is given by the following



program:

maxui

ui ≤
∑
j

U i
jkx

i
j + T i

k, ∀k ∈ [K]

∑
j

xijpj ≤
∑
j

W i
jpj +

∑
f

Θi
fφ

f

xij ≥ 0, ∀j ∈ G

(9)

Note that the budget constraint here is dependent on the profit earned by the firms,
however we can treat it as a linear function of prices as explained in Step 2 of the algo-
rithm in Section 3. Let ei def

=
∑

j W
i
jpj +

∑
f Θi

fφ
f . Further, without loss of generality we

may assume that the constraints form a full-dimensional polytope and no constraint
is redundant.

Next for some choices of K∗ ⊆ [K] and J∗ ⊆ [n] such that |K∗| + |J∗| ≤ n, the set of
optimal bundles is Qi ∩ {x : p.x = ei} where

Qi = {x : ∀k ∈ K∗, ui = U i
k.x

i + T i
k; ∀k 6∈ K∗, ui ≤ U i

k.x
i + T i

k,

∀j ∈ J∗, xij = 0; ∀j 6∈ J∗, xij ≥ 0}

There are O((K + n)n) different choices for Qi and the correct one depends on the
prices. For this, we partition the price space so that the choice depends on the cell
in this partition. We are actually interested in the reverse question: For what prices,
(K∗, J∗) is the correct choice?

Next consider the dual problem of (9):

minimize αiei +
∑
k

λikT
i
k

subject to ∀j, pjαi ≥
∑
k

λikU
i
jk;

∑
k

λik ≥ 1

αi ≥ 0, λik ≥ 0

The set of optimal solutions of dual is given by:

Di = {αi, λik : ∀j ∈ J∗∗, pjαi =
∑
k

λikU
i
jk; ∀j 6∈ J∗∗, pjαi ≥

∑
k

λikU
i
jk

∀k ∈ K∗∗, λik = 0; ∀k 6∈ K∗∗, λik ≥ 0;
∑
k

λik = 1}

for some choices of K∗∗ ⊆ [K] and J∗∗ ⊆ [n].
Using complementarity slackness condition for the optimality, it is clear that if

K∗∗ = (K∗)c and J∗∗ = (J∗)c then a given (K∗, J∗) is the right choice for those prices,
for which both Q̂i and Di is non-empty.

Next we want to partition the price space so that given a cell in this partition, one
can determine if both Q̂i and Di is non-empty. Note that Qi is independent of prices, so
clearly Q̂i is non-empty iff the hyperplane p.x = ei intersects Qi. Further this happens
iff there are two vertices z and z′ of Qi such that p.z ≤ ei and p.z′ ≥ ei.

Note that the vertices of Qi are same as the vertices of the simplicial subdivision
in the definition of agent i’s utility function. Next partition the price space with the



following hyperplane for each vertex of the simplicial subdivision z:

p.z = ei.

As discussed above, a cell in this partition can determine if Q̂i is non-empty. For the
non-emptiness of Di, consider the equations:

∀j ∈ J∗∗, pjαi =
∑
k∈K∗

λikU
i
jk and

∑
k∈K∗

λik = 1

We can eliminate αi from these equations and get:

∀j ∈ J∗∗, pj =
∑
k∈K∗

µi
kU

i
jk.

Note that this is an over-determined system of equations, since the number of variables
are |K∗| ≤ n− |J∗| = |J∗∗| = the number of equations. Hence one can solve for the µi

k ’s
in terms of p. In fact, each µi

k is a linear function of p. In case the number of variables
are strictly less than number of equations, then one can solve for µi

k ’s using a subset
of equations and then plug in those values in the rest of equations, which again give a
linear equations in p. Finally, Di is non-empty iff if the solution also satisfy:

∀k ∈ K∗, µi
k ≥ 0 and ∀j ∈ J∗, pj ≥

∑
k∈K∗

µi
kU

i
jk.

Note that all equations are linear in p, so if we partition the space with these hyper-
planes then a cell in the partition determines if Di is non-empty. Moreover the total
number of equations are polynomials and their degree are polynomial, and the number
of variables are constant. Hence the running time is polynomial.


