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1 Two Player Finite Simultaneous Games

A two player finite simultaneous game can be described by two payoff matrices
A and B of size m × n, where m and n are number of strategies of players 1
and 2 respectively. These strategies are called pure strategies. Let Si denote
the set of pure strategies of player i. Players 1 and 2 are also called row and
column players respectively because player 1 can be thought of picking a row
and player 2 can be thought of picking a column.

Example. Rock-Paper-Scissors: Each player has three strategies rock, pa-
per, and scissor. The payoff matrices are:

A =

 0 −1 1
1 0 −1
−1 1 0

 and B =

 0 1 −1
−1 0 1
1 −1 0

 .

Assumptions. We will assume that players are intelligent and rational,
and they know the payoff matrices.

Definition 1.1 (Equilibria in pure strategies). A strategies pair (i, j) ∈ S1×S2

is said to be a pure strategy equilibrium iff i is a best response to j and j is a best
response to i, i.e., i gives the best payoff that player 1 can get given that player
2 plays j and j gives the best payoff that player 2 can get given that player 1
plays i.

Observe that there is no pure strategy equilibrium in the Rock-Paper-Scissor
game. Since the existence of a pure equilibrium is not guaranteed, next we define
a notion of mixed strategy where the players can randomize their pure strategies.

The set of mixed strategies of player 1 is defined as ∆(S1) = {x ∈ Rn | 0 ≤
xi ≤ 1,∀i ∈ S1;

∑
i xi = 1} and that of player 2 as ∆(S2) = {y ∈ Rn | 0 ≤ yj ≤

1,∀i ∈ S2;
∑
j yj = 1}. Note that mixed strategies contain all pure strategies.

For convenience, we will denote ∆(S1) as ∆m since |S1| = m, and ∆(S2) as ∆n.
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Observe that when the play is (x, y) ∈ ∆m ×∆n, then the payoff of first player
is xTAy and that of second player is xTBy. For convenience, sometime we will
ignore putting the transpose and write xAy instead of xTAy.

Definition 1.2 (Equilibria in mixed strategies). A strategies pair (x, y) ∈ ∆m×
∆n is said to be a mixed strategy equilibrium iff x is a best response to y and y
is a best response to x, i.e.,

xAy ≥ x̃Ay, ∀x̃ ∈ ∆m and xBy ≥ xBỹ, ∀ỹ ∈ ∆n.

John Nash [15] proved in 1951 that every finite game has a mixed strategy
equilibrium, which is also called a Nash equilibrium of the game. The proof uses
a fixed point theorem and is highly non-constructive, i.e., it doesn’t say anything
about computing an equilibrium. The next question is the computation of
equilibria.

1.1 Zero-Sum Games

For computation of an equilibrium, we first study an important and interesting
subclass of two-player finite games called zero-sum games, where the sum of
payoff matrices is a zero matrix, i.e., Aij + Bij = 0,∀i, j or B = −A. For
example, Rock-Paper-Scissors is a zero-sum game.

Question. How to find an equilibrium in a zero-sum game?
For the answer to the above question, consider the following question: How

much payoff the row player can guarantee itself? Note that if row player plays
x then it will get at least miny∈∆n xTAy payoff. Let

π1 = max
x∈∆m

min
y∈∆n

xTAy and x∗ = arg max
x∈∆m

min
y∈∆n

xTAy.

Then, by playing x∗ row player can guarantee itself a payoff of at least π1.
Similarly, note that if column player plays y then it can ensure at least

−maxx∈∆m xTAy payoff or in other words, it can force at most maxx∈∆m xTAy
payoff on the row player. Let

π2 = min
y∈∆n

max
x∈∆m

xTAy and y∗ = arg min
y∈∆n

max
x∈∆m

xTAy.

Then, by playing y∗ column player can force a payoff of at most π2 on the row
player.

Observe that both players can compute (x∗, y∗) and (π1, π2) themselves using
the payoff matrix A.

Theorem 1.3 (Minimax theorem (von Neumann and Morgenstern 1944)).

• π1 = π2.

• (x∗, y∗) is a Nash equilibrium of game (A,−A).
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Proof. Using the strategy profile (x∗, y∗), we get π1 ≤ x∗Ay ≤ π2. This implies
that π1 ≤ π2. For the other direction (i.e., π1 ≥ π2), we use the Nash’ theorem
that there exists a Nash equilibrium in every finite game. Suppose (x′, y′) be a
Nash equilibrium of game (A,−A). Then, we get π1 ≥ x′Ay′ ≥ pi2.

Corollary 1.4. All Nash equilibrium payoffs are same.

Lemma 1.5. If (x, y) and (x′, y′) are two Nash equilibria, then so are (x, y′)
and (x′, y).

Proof. Suppose x is not a best response to y′. Then

xAy ≤ xAy′ < x′Ay′ ≤ x′Ay ≤ xAy,

which is a contradiction.

Corollary 1.6. The set of Nash equilibria is convex.

Next, we design an alternate proof using the linear programming (LP) du-
ality. For that, we ask the following question: Given the strategy y of column
player, what is the maximum payoff row player can get?

Let Ai denote the ith row of matrix A. Then, Aiy is the payoff row player
will get by playing pure strategy i. Therefore, maxi∈S1 Aiy is the maximum
payoff row player can get for a pure strategy.

Claim 1.7. Given y, the maximum payoff that row player can obtain from a
mixed strategy is at most maxi∈S1 Aiy.

Lemma 1.8. The following problems (1) and (2) are equivalent to each other.

π1 = max
x∈∆m

min
y∈∆n

xTAy. (1)

maxπ1

π1 ≤ xTAj , ∀j ∈ S2∑
i xi = 1
xi ≥ 0, ∀i ∈ S1

(2)

Similarly, we have the following theorem.

Lemma 1.9. The following problems (3) and (4) are equivalent to each other.

π2 = min
y∈∆n

max
x∈∆m

xTAy. (3)

maxπ2

Aiy ≤ π2, ∀i ∈ S1∑
j yj = 1

yj ≥ 0, ∀j ∈ S2

(4)

Theorem 1.10 (Minimax theroem using LP duality). The LPs (2) and (4) are
dual of each other. Hence, using the strong duality theorem of LPs, π1 = π2.
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Corollary 1.11. Nash equilibria of a zero-sum game can be obtained by solving
a LP, and hence is polynomial time computable.

Remark 1.12. Theorem 1.10 implies that the problem of computing Nash equi-
libria in a zero-sum game can be reduced to linear programming. [8, 1] gave
reverse reduction by reducing LPs to zero-sum games. These results together
imply that LPs and Zero-sum games are equivalent to each other.

1.2 Non-zero-sum Games

In this section, we study general two-player game (A,B). First let’s try to
simplify the game. Given a game (A,B), if we construct another game (A′, B)
where A′ij = Aij + c,∀i, j, i.e., a constant c is added to every entry of A. Then
what is the relationship between the Nash equilibria (NE) of (A,B) and (A′, B)?

Claim 1.13. The set of Nash equilibria is same for games (A,B) and (A′, B).

Proof. Let (x, y) is a NE of game (A,B), then we have

xTAy ≥ x̃TAy,∀x̃ ∈ ∆m and xTBy ≥ xTBỹ,∀ỹ ∈ ∆n,

which is same as

xTAy + c ≥ x̃TAy + c,∀x̃ ∈ ∆m and xTBy ≥ xTBỹ,∀ỹ ∈ ∆n,

and hence

xTA′y ≥ x̃TA′y,∀x̃ ∈ ∆m and xTBy ≥ xTBỹ,∀ỹ ∈ ∆n.

The reverse direction also follows similarly, where a NE of (A′, B) is also a NE
of game (A,B).

Now, suppose we consider two games (A,B) and (A′, B′) where A′ij = cAij+
d, ∀i, j and B′ij = eBij+f, ∀i, j, where c, d > 0 and e, f are any constants. Then,
the following theorem is an easy extension of the above claim.

Theorem 1.14. The set of Nash equilibrium of game (A,B) and (A′, B′) (as
defined above) is same.

Corollary 1.15. For the purpose of computing Nash equilibria, we can without
loss of generality assume that all entries of A and B are between 0 and 1, i.e.,
0 < Aij , Bij < 1,∀i, j.

Henceforth, we will assume that all entries of A,B are between 0 and 1.
Characterizing Nash equilibria. In this section, we will characterize the
conditions for the strategies (x, y) to be a Nash equilibrium. Recall that when
(x, y) is played, the expected payoff of player 1 and 2 are xTAy and xTBy
respectively. Further, since x is a best response to y at a Nash equilibrium, if
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a pure strategy i is played with a non-zero probability then it should give the
maximum payoff among all pure strategies, i.e.,

xi > 0⇒ Aiy = max
k

Aky,∀i ∈ S1

Let us introduce a variable π1 that captures the maximum payoff that player 1
can get, i.e.,

xi > 0⇒ Aiy = max
k

Aky = π1,∀i ∈ S1.

This implies that at a Nash equilibrium (x, y) we have

xi ≥ 0; Aiy ≤ π1; xi(Aiy − π1) = 0,∀i ∈ S1.

Similarly, for the second player, since y is a best response to x, we have

yj ≥ 0; xTBj ≤ π2; yj(x
TBj − π2) = 0,∀j ∈ S2,

where π2 captures the maximum payoff that player 2 can get. Putting these
Together with the probability constraints give us

yj ≥ 0, ∀j; Aiy ≤ π1, ∀i;
∑
j yj = 1

xTBj ≤ π2, ∀j; xi ≥ 0, ∀i;
∑
i xi = 1

yj(x
TBj − π2) = 0; xi(Aiy − π1) = 0.

(5)

The following lemma easily follows from the construction

Lemma 1.16. A strategy profile (x, y) is a Nash equilibrium of game (A,B) if
and only if it is a solution of (5), where πi captures the payoff of player i for
i = 1, 2.

Observe that the first two set of constraints are linear and hence easy to
handle, the hard constraints are the last ones, which are quadratic. They are
in fact a special kind of quadratic constraints, which pairs up a non-negativity
constraint and a linear constraint and wants that either the variable is 0 or the
corresponding linear constraint is tight (i.e., satisfies with the equality). This
special quadratic formulation is called Linear Complementarity Problem (LCP)
formulation.

So using Lemma 1.16 in order to find a Nash equilibrium, we need to solve the
LCP given in (5). Next, we further simplify the LCP as follows. First, we sim-
plify writing the above LCP by denoting the complementarity constraint with
the ⊥ symbol between the non-negativity constraint and the linear inequality
constraint as follows:

Aiy ≤ π1 ⊥ xi ≥ 0, ∀i ∈ S1

xTBj ≤ π2 ⊥ yj ≥ 0, ∀j ∈ S2∑
j yj = 1;

∑
i xi = 1

(6)

Observe that the system (6) is same as the system (5). Next, our goal is to
remove πis from the above formulation, and for that we use Corollary 1.15 and
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assume that all entries of A,B are between 0 and 1. Using that, we can take
πis to the left hand side in (6) and we get:

Ai(y/π1) ≤ 1 ⊥ xi/π2 ≥ 0, ∀i ∈ S1

(x/π2)TBj ≤ 1 ⊥ yj/π1 ≥ 0, ∀j ∈ S2∑
j yj/π1 = 1;

∑
i xi/π2 = 1

(7)

Clearly, the system (7) is same as system (6). Next, we replace yj/π1 as ỹj
and xi/π2 as x̃i and discard the last set of constraints and obtain the following:

Aiỹ ≤ 1 ⊥ x̃i ≥ 0, ∀i ∈ S1

x̃TBj ≤ 1 ⊥ ỹj ≥ 0, ∀j ∈ S2
(8)

The following lemma relates (8) and (7).

Lemma 1.17. A solution (x, y, π1, π2) of (7) gives a solution of (8). Fur-
thermore, a non-zero solution (x̃, ỹ) of (8) gives a solution (x, y, π1, π2) =
( x̃∑

i x̃i
, ỹ∑

j ỹj
, 1∑

j ỹj
, 1∑

i x̃i
) of (7).

It is easy to prove the above lemma. This lemma together with Lemma 1.16
implies that finding a Nash equilibrium of game (A,B) is equivalent to finding
a non-zero solution of the LCP given by (8). In the next section, we will discuss
the classic Lemke-Howson algorithm to find a non-zero solution of (8).

1.2.1 Lemke-Howson Algorithm

Before we begin with the Lemke-Howson algorithm, let us revise the basic facts
about the polyhedra which will be useful in the algorithm.

A set of linear inequalities in n variables defines a polyhedron in n-dimension.
A polytope is a bounded polyhedron. Each inequality defines a half-space and
a tight inequality (i.e., satisfies with equality) is called a hyper-plane. We say
that a polyhedron is non-degenerate if the number of hyper-planes (or tight
inequalities) at a vertex is exactly n, and more generally the number of hyper-
planes at a k-dimensional face of the polyhedron is exactly n − k. A vertex
is a 0-dimensional face of the polyhedron, and an edge is a 1-dimensional face
of the polyhedron. In a non-degenerate polyhedron of n-dimension, there are
exactly n edges incident on a vertex, which can be obtained by relaxing a hyper-
plane (i.e., not requiring the inequality corresponding to this hyperplane to be
equality). Since there are n hyperplanes incident on a vertex, relaxing one will
give one edge, and hence there are n edges incident on a vertex.

Observe that if we ignore the complementarity constraints (defined by ⊥)
in (8), then the set of linear inequalities defines a polytope. We say that the
game (A,B) is non-degenerate if the polytope defined by the linear inequalities
as in (8) (by ignoring the ⊥ constraints) is non-degenerate. We remark that
the degeneracy can be easily handled by several standard techniques, e.g., by
perturbing the entries slightly. Henceforth, we will assume that the game is
non-degenerate.

6



Recall that our goal is to find a non-zero solution of (8). Let’s label the
hyperplanes (corresponding to each inequality of (8)) as follows: Assign label i
to Aiy = 1 and xi = 0 for 1 ≤ i ≤ m, and assign label m+ j to xTBj = 1 and
yj = 0 for 1 ≤ j ≤ n. Note that there are a total of m+ n labels and each label
is given to exactly two hyperplanes. Let P be the polytope defined by the linear
inequalities in (8) (ignoring the ⊥ constraints). Let v be a point in P and let
L(v) denote the union of labels of the inequalities tight at v (i.e., hyperplanes
incident on v).

Definition 1.18. A point v in polytope P is called completely labeled if all labels
are present at v, i.e., L(v) = {1, 2, . . . ,m+ n}.

What are the solutions of (8)? If (x, y) is a solution of (8) then it has to
satisfy all linear inequalities (i.e., a feasible point in P ) and all complementary
(the ⊥ constraints). Note that it is easy to obtain a feasible point in P because
that is equivalent to solving a linear program. The problem here is that we
want a feasible point which also satisfies all the complementarity constraints.
Furthermore, since there are m + n complementarity constraints (i.e., at a so-
lution at least m+ n inequalities must be tight) and the dimension of polytope
P is m + n, every solution of (8) is at a vertex of P . Since if a feasible point
of P satisfies all complementarity constraints, then it should have all the labels
because each complementarity has a different label. From this discussion, we
can conclude that every solution of (8) is a completely labeled vertex of P and
vice-versa. Therefore, finding a non-zero solution of (8) reduces to finding a
non-zero completely labeled vertex of P .

Now, observe that (x, y) = (0, 0) is both feasible (a vertex of P ) and completely-
labeled, hence it is a trivial solution of (8). The Lemke-Howson algorithm starts
with the trivial completely-labeled vertex (0, 0) and fix a label k, 1 ≤ k ≤ m+n,
and then it relaxes the hyperplane corresponding to the label k. Since now we
have exactly m + n − 1 inequalities tight, we are on an edge. Then it keeps
moving on this edge defined by the m + n − 1 tight inequalities until it hits
another hyperplane (a new inequality becomes just tight). At this new vertex,
either it is completely-labeled (in that case we are done) or there has to be some
duplicate label (because there are exactly m + n hyperplanes incident on any
vertex and there are m + n distinct labels, which implies that if not all labels
are present then some label must be duplicate. Further, observe that we had
all labels present except k on the edge, so when we hit a new hyperplane then
either we acquire k or some j 6= k. In the latter case, we have exactly one
duplicate label, that is, j.

Now since there are two hyperplanes corresponding to label j, one is recently
acquired, the algorithm relaxes the other hyperplane corresponding to label j,
and we again move on an edge of P , where all labels are present except k. By
doing this, we again hit another hyperplane and the same situation repeats. We
claim that this process has to stop at a non-zero completely-labeled vertex.

For the correctness, we need to show that: The process of moving from one
vertex to another always visits a new vertex and since the number of vertices
are finite, the process has to stop at a non-zero completely labeled vertex.
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For the contradiction, suppose the algorithm comes back to the previously
visited vertex, then there are two cases: First, it comes back to (0, 0), in that
case since (0, 0) is completely-labeled and the entire path has all the labels
except k, there is only one way to move from (0, 0) such that all labels are
present except k, which is to relax the hyperplane corresponding to the label
k. For the another case, suppose it comes back to an intermediate vertex, in
that case since this intermediate vertex has exactly one duplicate label, say j,
and there are exactly two ways to move from this vertex such that all labels
are present except k, which is to relax one of the hyperplanes corresponding to
label j. And if the process comes back to this vertex, then it implies that there
are 3 ways to move from this vertex, which is a contradiction.

In summary, the Lemke-Howson algorithm finds a Nash equilibrium (in fact,
it shows that there exists one without using fixed point theorems), but in the
worst case it may have to go over an exponential number of vertices. However,
the algorithm in general works quite fast in practice. Also, as corollaries, we can
deduce from the Lemke-Howson algorithm that all Nash equilibria are rational
if all entries of A and B are rational valued numbers, and there are odd number
of equilibria.

1.2.2 Support Enumeration Algorithm

In the last section, we saw that the Lemke-Howson algorithm converges to a
Nash equilibrium but it doesn’t give any guarantee about it whether it is the
only equilibrium or whether it is the best in terms of the total expected payoff,
etc. Furthermore, in some applications we desire all Nash equilibria or the one
with a particular feature. In this section, we answer these questions using the
support enumeration algorithm.

A support of a mixed strategy, say x = (x1, . . . , xm), is defined as

supp(x) = {i | xi > 0},

i.e., the set of pure strategies that are played with non-zero probability. For
example, if x = (0.5, 0, 0.2, 0.3, 0), then supp(x) = {1, 3, 4}.

Recall that we have discussed in the previous sections that finding a Nash
equilibrium is a hard problem. Suppose we know the support of an equilibrium
(but not the actual probabilities), does finding the Nash equilibrium correspond-
ing to the given support becomes easy?

Given supp(x) and supp(y), we know that (x, y) needs to satisfy the con-
straints that each pure strategy in the support must give the maximum payoff,
i.e.,
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Aiy = π1, ∀i ∈ supp(x)
Aiy ≤ π1, ∀i 6∈ supp(x)
xTBj = π2, ∀j ∈ supp(y)
xTBj ≤ π2, ∀j 6∈ supp(y)∑

i xi = 1∑
j yj = 1

xi ≥ 0, ∀i ∈ S1

yj ≥ 0, ∀j ∈ S2

xi = 0, ∀i 6∈ supp(x)
yj = 0, ∀j 6∈ supp(y)

, (9)

where π1 and π2 captures the payoffs of player 1 and 2 respectively at the
Nash equilibrium whose support is supp(x) and supp(y). The first four con-
straints capture that each pure strategy in the support must give the maximum
payoff to both the players, and the remaining constraints capture the probability
distribution whose support is supp(x) and supp(y).

Notice that the (9) is a system of linear inequalities which can be solved
efficiently (in polynomial time) using linear programming. Verify that any fea-
sible point, satisfying (9) is a Nash equilibrium of the game (A,B). However, if
the feasible region is empty, then that implies that there is no Nash equilibrium
with the given support pair.

Thus, the problem of computing a Nash equilibrium becomes easy if we
know the support of equilibrium. However, we don’t know the support and in
that case we can enumerate over all support pairs and that will not only find
one equilibrium but all equilibria in a non-degenerate game. There are 2m+n

support pairs when A and B are of m × n dimension, which is exponential in
the number of strategies. And for each support pair we need to solve one linear
feasibility program as in (9) that can be done in polynomial time using the
ellipsoid or interior point method.

2 Correlated Equilibria

We noticed that there might be many Nash equilibria so it is not clear which
one will be played. Furthermore, even if the Nash equilibrium is unique, the
payoff can be very bad (e.g., prisoner’s dilemma). To address these issues, next
we consider a more general solution concept called correlated equilibrium, first
discussed by Robert Aumann in 1974.

Let pij denote the probability by which the strategy profile (i, j) is played
at a Nash equilibrium, where player 1 plays the ith strategy and player 2 plays
the jth strategy and it can be denoted by

p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

...
...

pm1 pm2 . . . pmn

 .
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Example 2.1. Consider the game of chicken given by the following payoffs:[
0, 0 5, 1
1, 5 4, 4

]
It’s a symmetric game and let the two strategies are (S,C). There are two
pure Nash equilibria of this game given by (S,C) and (C, S), and a mixed Nash
equilibrium given by ((1/2S + 1/2C), (1/2S + 1/2C)), i.e., play S and C with
1/2 probability each.

The probability distribution pijs at Nash equilibria of this game is[
0 1
0 0

]
,

[
0 0
1 0

]
, and

[
1/4 1/4
1/4 1/4

]
.

In Nash equilibria, players choose the strategies independently. In contrast,
suppose there is a third trusted party or a mechanical device (called coordinator)
who draws a sample from a public (known to both the players) distribution
[pij ]i∈S1,j∈S2

before the game is played, and suppose the strategy profile (i, j) is
drawn then the coordinator advises the first player to play the ith strategy and
advises the second player to play the jth strategy, privately (i.e., players don’t
know what is the advice given to the other player). Then the distributions pijs
under which if it is best for each player to follow the advice assuming that the
other player is going to follow the advice, then this probability distribution is
called a correlated equilibrium. The set of correlated equilibria are the set of
such probability distributions.

Suppose [pij ]i∈S1,j∈S2 is a correlated equilibrium. Then, with probability pij
the strategy profile (i, j) will be drawn. Since this is a correlated equilibrium, it
is best for the first player to follow the advice assuming that the second player
follows the advice given to him/her. This implies that

The expected payoff of a player by following the advice should be at least the
expected payoff from not following the advice (assuming that the other player
follows the advice given to him), i.e., for the first player we have,∑

j

Aij
pij∑
k pik

≥
∑
j

Ai′j
pij∑
k pik

, ∀i, i′ ∈ S1,

where
pij∑
k pik

is the probability that the second player is advised to play j

given that the first player is advised to play i. Similarly, for the second player
we have ∑

i

Bij
pij∑
k pkj

≥
∑
i

Bij′
pij∑
k pkj

, ∀j, j′ ∈ S2.

By simplifying above, and adding the probability distribution constraint, the
set of correlated equilibria are given by:∑

j Aijpij ≥
∑
j Ai′jpij , ∀i, i′ ∈ S1∑

iBijpij ≥
∑
iBij′pij , ∀j, j′ ∈ S2∑

i,j pij = 1

pij ≥ 0, ∀i, j

(10)
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Let NE and CE denote the set of Nash equilibria and correlated equilibria
respectively. The following claim is easy to check.

Claim 2.2. NE ⊆ CE.

The above claim implies using the Nash’s theorem that the set of correlated
equilibria is non-empty. In Example 2.1, the expected total payoff at the three
Nash equilibria are 6, 6, and 5 respectively. There are many correlated equilibria
in this example: verify that one which has the maximum expected total payoff
of 62/3 is given by the distribution[

0 1/3
1/3 1/3

]
.

Question: Why the above distribution is not possible at a Nash equilibrium?

3 Cooperative Game Theory

3.1 Nash Bargaining and Cooperation in 2-player Game

The problem with the concept of correlated equilibria is that there are many
equilibria and hence there would be conflict of interest about selecting one par-
ticular equilibrium. We need a theory of cooperative equilibrium selection.

Let’s begin with an example.

Example 3.1. Divide the dollar game (2 players). Both players simulta-
neously propose an allocation to divide $100. They get their allocation if they
propose the same allocation, otherwise each gets $0.

Observe that there are many equilibria in this game. Suppose players don’t
know each other, but want to win some money. What would you do if you play
this game? Why?

Focal Point (or Focal equilibrium) (in absence of communication) When there
are multiple equilibria, there is one which can be determined by any of a wide
range of factors including environment, culture, etc. For example, one which
is impartial, fair, natural. To quote Thomas Schelling: “It is each person’s
expectation of what the other expects him/her to expect to be expected to do.”

The question is: What is the reasonable bargaining solution? Let’s first
define the problem formally. The two-player bargaining problem is defined by
(F, v) where F is a closed convex set of R2 denoting a set of feasible payoffs,
(v1, v2) ∈ R2 is the disagreement point, and the set F ∩{(x1, x2) | x1 ≥ v1;x2 ≥
v2} is non-empty and bounded.

First of all, given a two player game, how would you get (F, v)? F can
be obtained as the set of payoff tuple at a correlated equilibrium of the game,
and vi can be minimax payoff of player i = 1, 2 which player i can ensure
himself/herself without cooperating with the other player.
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The goal is to find a solution function φ : (F, v) → (x1, x2) ∈ R2, where xi
is the payoff allocation of player i = 1, 2. What are the reasonable properties φ
should satisfy? Nash approached this problem axiomatically.

Axiom 1. Strong efficiency or Pareto efficiency. If φ(F, v) = (x1, x2) then there
shouldn’t exist another feasible point (x′1, x

′
2) ∈ F such that (x′1, x

′
2) 6=

(x1, x2) and x′i ≥ xi for i = 1, 2. An inefficient outcome is unlikely due to
the space for renegotiation.

Axiom 2. Individually rational. φ(F, v) ≥ v, i.e., φi(F, v) ≥ vi,∀i = 1, 2.

Axiom 3. Invariance to equivalent payoff representations or change the way we mea-
sure the utility/payoff. For any number λ1 > 0, λ2 > 0, γ1, γ2 such that

G = {λ1x1 + γ1, λ2x2 + γ2 | (x1, x2) ∈ F} and w = (λ1v1 + γ1, λ2v2 + γ2),

Then φ(G,w) = (λ1φ1(F, v) + γ1, λ2φ2(F, v) + γ2).

Axiom 4. Independence of irrelevant alternatives. If G ⊆ F (G is closed and convex)
and φ(F, v) ∈ G then φ(G, v) = φ(F, v).

Axiom 5. Symmetry. If {(x2, x1) | (x1, x2) ∈ F} = F and v1 = v2 then φ1(F, v) =
φ2(F, v).

Theorem 3.2 (Nash bargaining solution). There is exactly one function φ(., .)
that satisfies all axioms,

φ(F, v) = arg maxx∈F,xi≥vi(x1 − v1)(x2 − v2).

The nice Properties of the Nash bargaining solution is that it is unique and
it always exists.

What is the Nash bargaining solution for divide the dollar game? Check
that it is (50, 50).

What happens for more than 2 players? The Nash bargaining solution for n
players is:

φ(F, v) = arg maxx∈F,xi≥vi

n∏
i=1

(xi − vi).

We next consider the variants of divide the dollar game to understand how
good the Nash bargaining solution for n > 2 players.

Example 3.3. Consider the variant of divide the dollar game. Let n = 3 and
total money is $300. Players get 0 unless all three propose the same non-negative
allocation and total must be at most 300, in which case they get this allocation.

Observe that F = {(x1, x2, x3) | x1 + x2 + x3 ≤ 300;xi ≥ 0,∀i} and v =
(v1, v2, v3) = (0, 0, 0). It is easy to check that the Nash bargaining solution is
(100, 100, 100).
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Example 3.4. Consider another variant of divide the dollar game. Let n = 3
and total money is $300. Players get 0 unless players 1 and 2 propose the same
non-negative allocation and the total must be at most 300 in which case they get
this allocation.

Observe that F = {(x1, x2, x3) | x1 + x2 + x3 ≤ 300;xi ≥ 0,∀i} and v =
(v1, v2, v3) = (0, 0, 0). It is easy to check that the Nash bargaining solution is
again (100, 100, 100).

Observe that the Nash bargaining solution is reasonable for the first example
but unreasonable for the second. The problem with the Nash bargaining solution
when there are more than 2 players it that it completely ignores the possibility
of cooperation among subsets of players. So it is not widely used for the analysis
of game with more than 2 players.

Consider One more example before we proceed with another solution concept
for multi players.

Example 3.5. Consider one more variant of divide the dollar game. Let n = 3
and total money is $300. Players get 0 unless any two players propose the same
non-negative allocation and the total must be at most 300 in which case they get
this allocation.

Observe that F = {(x1, x2, x3) | x1 + x2 + x3 ≤ 300;xi ≥ 0,∀i} and v =
(v1, v2, v3) = (0, 0, 0). It is easy to check that the Nash bargaining solution is
again (100, 100, 100), but how different is this example from the previous ones.

The above example is very complicated to analyze due to interaction among
different subset of players. We will need a notion of coalition and transferable
utility. Any non-empty subset of players is called a coalition, and a coalition
with all players is called grand coalition.

Transferable utility. A common commodity – money – that players can freely
transfer among themselves.

Now we can assign a number to each coalition.

v : 2N → R,

where N is the set of players, and v(S) is the worth of coalition S, i.e., total
amount of transferable utility S can earn without any help from outside players.
Clearly, v(∅) = 0. v represents a coalition game. The worth of each coalition in
the above examples are as follows:

Example 1: v({1, 2, 3}) = 300, v({1, 2}) = v({1, 3}) = v({2, 3}) = v({1}) =
v({2}) = v({3}) = 0.

Example 2: v({1, 2, 3}) = v({1, 2}) = 300, v({1, 3}) = v({2, 3}) = v({1}) =
v({2}) = v({3}) = 0.

Example 3: v({1, 2, 3}) = v({1, 2}) = v({1, 3}) = v({2, 3}) = 300, v({1}) =
v({2}) = v({3}) = 0.

13



3.2 The Core

An allocation x is in core of a coalition game v if∑
i∈S

xi ≥ v(S),∀S ⊆ N and
∑
i∈N

xi = v(N).

If an allocation is not in the core, then there is some coalition S such that
the players in S could all do strictly better than in x by cooperating together
and dividing the worth v(S) among themselves.

The core of Example 1: {(x1, x2, x3) | x1 + x2 + x3 = 300}
The core of Example 2: {(x1, x2, 0) | x1 + x2 = 300}
The core of Example 3: empty

The problem with the concept of the core is it can be empty or very large.
That makes it difficult as a predictive theory. What we want is a theory that
predicts, for each game in coalitional form, a unique expected payoff allocation
for the players. Or in other words, we would like to identify some mapping
ψ : (N, v)→ RN , where ψi is the payoff of player i.

3.3 Shapley Value

Shapley approached the above problem axiomatically, i.e., what kind of proper-
ties we might expect ψ : (N, v)→ RN to satisfy?

Axiom 1. Symmetry. If players i and j contribute the same amount to each coalition
of other players then they should get the same allocation, i.e., if v(S ∪
{i}) = v(S ∪ {j}),∀S ⊆ N \ {i, j}, then ψi(N, v) = ψj(N, v).

Axiom 2. Dummy Player. If player i contributes to any coalition of other players is
exactly that i is able to achieve alone, then i should get exactly that, i.e.,
if v(S ∪ {i})− v(S) = v({i}) then ψi(N, v) = v({i}).

Axiom 3. Additivity Two coalition games v1 and v2 involving the same set of players.
Suppose we remodel the setting as a single game in which each coalition
S receives a payoff of v1(S) + v2(S), then ψi(N, v1 + v2) = ψi(N, v1) +
ψi(N, v2).

Theorem 3.6 (Shapley Value Theorem). There is a unique function ψ that
satisfies all three axioms and it is given by:

ψi(N, v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)).

The above formula can be interpreted by considering a queue of all players
outside a room in which exactly one player can enter at a time. Suppose players
randomly line up in a queue. Note that there are |N |! different ways in which
the players can be lined up in a queue. Further, for any set S of players that
doesn’t contain player i there are exactly |S|!(|N | − |S| − 1)! different ways to
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order the players such that S is the set of players who are ahead of i in the

queue. Hence, with |S|!(|N |−|S|−1)!
|N |! probability, When player i enters the room,

he/she will find S set of players already in the room. In that case, player i
marginal contribution to the worth of coalition in the room when he enters is
v(S ∪ {i}) − v(S). Hence, the Shapley value of any player is his/her expected
marginal contribution when he/she enters the room.

We remark that Shapley value is a powerful tool to evaluate the power
structure of the coalition game. Compute the Shapley value in above three
examples.

Example (Voting Game). A parliament of country ABCD is made of
4 political parties A, B, C, D, and they have 45, 25, 15, 15 representatives
respectively. They need to vote for a 100 million dollar ($100M) spending bill
whether to pass it or not, and how much of this amount is controlled by each
party. A majority (minimum of 51) votes are needed to pass the legislation. If
the bill doesn’t pass then each party gets 0 to spend.

What are the winning coalitions of this game? What is the coalition game
v?

v({A,B}) = 100M = v({A,B,C}) = ...

v({A} = 0 = v({B}) = ...

Check that the Shapley value of A is $50M and players B,C,D are sym-
metric and each gets $50/3M each. Note that even though B has more repre-
sentatives in the parliament compared to C and D, but it has the same power
(in case of majority voting) like C and D. Further, check that the core of this
coalition game is empty.

4 Linear Complementarity Problem and Lemke’s
Algorithm

In this section, we define linear complementarity problem (LCP) and the Lemke’s
algorithm for solving it.

Definition 4.1. Given a n×n matrix M and a n×1 vector q, find y such that
the following is satisfied:

My ≤ q; y ≥ 0; yT (My − q) = 0 . (11)

Note that the first constraint is Miy ≤ qi, for 1 ≤ i ≤ n, the second con-
straint is non-negative constraint, i.e., yi ≥ 0,∀i. These two set of constraints
are linear, but the last constraint is a quadratic constraint, i.e.,

∑
i yi(Miy −

qi) = 0. The last constraint can be simplified to yi(Miy − qi) = 0,∀i because
Miy − qi ≤ 0 and yi ≥ 0,∀i.

The (4.1) can be written as where the ⊥ denote that there is a complemen-
tarity condition between the two linear inequalities.
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Miy ≤ qi ⊥ yi ≥ 0, ∀i . (12)

Now the question is how to solve (12). Observe that if qi ≥ 0,∀i, then
yi = 0,∀i is a trivial solution. However, it is not clear how to find a solution
if some qis are negative. Also, observe that it is not clear how to use Lemke-
Howson algorithm on this LCP because we don’t have a starting completely
labeled vertex.

Note that the number of variables in (12) is n and we need at least n linear
inequalities to be tight (to satisfy the complementarity constraints) at a solution.
It implies that every solution of (12) is at a vertex of the polyhedron defined by
the linear constraints.

4.1 Lemke’s Algorithm

To solve (12), Lemke [14] added an auxiliary non-negative variable z and con-
sidered the following LCP:

Miy − z ≤ qi ⊥ yi ≥ 0, ∀i; z ≥ 0 . (13)

Note that every solution y of (12) gives a solution (y, 0) of (13), and every
solution (y, z) of (12) with z = 0 gives a solution y of (12). This implies that
finding a solution of (12) is equivalent to finding a solution of (13) with z = 0.

Furthermore, the number of variables in (13) is n+ 1, however we still have
n complementarity constraints. Therefore, every solution of (13) is either at a
vertex or on an edge of the polyhedron defined by the linear constraints. Let
us assign label i to Miy − qi ≤ 0 and yi ≥ 0. Let S denote the set of solutions
of (13). Consider a vertex solution v of S, there are n + 1 linear inequalities
tight at v. Since v is a solution and hence it satisfies all the complementarity
constraints, there are n linear inequalities corresponding to n different labels.
The one extra linear tight inequality comes from either z = 0 or some duplicate
label k such that Mky − z = qk and yk = 0 at v.

Suppose we want to move away from v and still in S, then in the former case
the only possible way is to relax the tight inequality corresponding to z = 0
and in the latter case there are two possible ways one relaxing Mky − z = qk
and another by relaxing yk = 0. These together implies that there is one edge
incident on v if it has z = 0, otherwise there are two edges incident on v.

The above discussion implies that S consists of a set of paths, whose end-
points are either vertices with z = 0 or infinite edges (also called rays). And
our goal is to find a vertex with z = 0. The advantage of working with (13)
is that if we plug in y = 0 then we get a ray (called primary)starting from
(y = 0, z = ∞) to (y = 0, z = (maxk{−qk}, 0), which is in S. When we reach
at the vertex corresponding to (y = 0, z = (maxk{yk}, 0), then this vertex has
either z = 0 (in that case we are done) or there is a duplicate label and using
that we can pivot (like in the Lemke-Howson (LH) algorithm). We repeat this
procedure until we find a vertex with z = 0.
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Like in the LH algorithm, we can easily show that the path followed by the
Lemke’s algorithm never revisits another vertex, but unlike the LH algorithm
the set of linear Inequalities now define a polyhedron (instead of polytope in
case of Nash equilibrium problem) and hence there is a danger that the Lemke’s
algorithm may converge on a ray (called secondary).

In summary, Lemke’s algorithm works on any (13) but may converge on a
secondary ray even though there is a solution of (12). This is clearly unavoidable
when the (12) has no solution. In order to achieve guaranteed convergence to a
solution, the proof of no secondary rays is needed, which states that there are
no secondary rays in the solution set S of (13).

5 Linear Markets

In this section, we define two fundamental market models: Fisher and Exchange.
The Fisher model was defined by Irving Fisher in 1891 [4] and Exchange in [19,
2].

5.1 The Fisher Market Model

In a Fisher market, there is a set A of n buyers (or agents) and a set G of
m divisible goods. Each buyer i comes with a budget of Mi dollars and has
a linear utility function over bundle of goods. The utility of buyer i from a
bundle xi = (xij)j∈G is given by

∑
j∈G Uijxij , where Uij is the utility from one

unit of good j. Note that Uijs define the utility function of buyers. At given
prices p = (p1, . . . , pm), where pj is price per unit of good j, each buyer buys
a utility maximizing (optimal) bundle of goods subject to budget constraints,
i.e., a bundle xi = (xi1, . . . , xin) such that

max
∑
j∈G

Uijxij subject to
∑
j∈G

xijpj ≤Mi.

At equilibrium prices p, each buyer gets an optimal bundle and market clears
(demand meets supply), i.e.,

∑
i xij = sj ,∀j ∈ G, where sj is the total supply

of good j. We can assume without loss of generality that sj = 1,∀j by scaling
the Uijs appropriately. Henceforth, we will assume that each good comes in
unit supply.

Without loss of generality, we will also assume that each buyer i is interested
in at least one good, i.e., Uij > 0 for some j ∈ G. If for some buyer i, Uij =
0,∀j ∈ G then we can discard this buyer from the market. Similarly, we will
assume that for each good j ∈ G, there is at least one buyer who is interested
in it, i.e., for each j, there exists a buyer i such that Uij > 0. If for some good
j, Uij = 0,∀i, then we can discard this good from the market.

The linear Fisher market equilibrium problem is to find equilibrium prices
and allocation for a given market.

Example 5.1. Consider a market with 2 buyers and 2 goods. The budget of
buyer 1 and 2 are $10 each, and the utility functions are: U11 = 1, U12 =
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0, U21 = 0, U22 = 1. What are the equilibrium prices and allocation in this
market?

Check that p1 = p2 = 10 and x11 = x22 = 1, x12 = x21 = 0 is the only
equilibrium in this market.

Example 5.2. Let’s modify the above market. The budget of buyer 1 and 2
are $10 each, and the utility functions are: U11 = 1, U12 = 0, U21 = 2, U22 = 1.
What are the equilibrium prices and allocation in this market?

Check that p1 = 40/3, p2 = 20/3 and x11 = 3/4, x21 = 1/4, x21 = 0, x22 = 1
is the only equilibrium in this market.

Question: Can price of some good j be zero at an equilibrium? No, since
under our assumption there is a buyer i such that Uij > 0, so if pj = 0, then
i will demand for an infinite amount of good j which will then not satisfy the
market clearing constraints. Hence, we can deduce that equilibrium prices of
all goods are non-zero.

5.2 The Exchange Market Model

In an exchange market, there is a set A of n agents and a set G of m di-
visible goods. Each agent i comes to market with an endowment of Wi =
(Wi1, . . . ,Wim), where Wij is the amount of good j, and it has a linear utility
function over bundle of goods. The utility of agent i from a bundle xi = (xij)j∈G
is given by

∑
j∈G Uijxij , where Uij is the utility from one unit of good j.

At given prices p = (p1, . . . , pm), where pj is price per unit of good j, each
agent first earns money by selling its endowment and then buys a utility max-
imizing (optimal) bundle of goods subject to budget constraints, i.e., a bundle
xi = (xi1, . . . , xin) such that

max
∑
j∈G

Uijxij subject to
∑
j∈G

xijpj ≤
∑
j∈G

Wijpj .

At equilibrium prices p, each agent gets an optimal bundle and market clears
(demand meets supply), i.e.,

∑
i xij =

∑
iWij ,∀j ∈ G. We can assume with-

out loss of generality that
∑
iWij = 1,∀j by scaling the Uijs appropriately.

Henceforth, we will assume that each good comes in unit supply.
The following claim is easy to check.

Claim 5.3. If p are equilibrium prices of an exchange market, then so are
α.p,∀α > 0.

Observe that the difference between Fisher and exchange models is only in
the money. In Fisher, it is fixed in the input, whereas in exchange it depends
on the prices of the goods.

Fisher model is a special case of exchange market model, where a given Fisher
market M with input parameters (Mi, U

f
ij) can be reduced to an exchange

market M′ with input parameters (Wij , U
e
ij), where Wij = Mi/

∑
kMk,∀i, j

and Ueij = Ufij ,∀i, j. Check that an equilibrium (p, x) ofM′ gives an equilibrium

(p
∑

kMk∑
j pj

, x) of M.
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5.2.1 Equilibrium Characterization

Let’s first capture the optimal bundles of agents. Given prices p, what is the op-
timal bundle xi of agent i? Note that Uij/pj is the utility per unit of money from
good j (also called bang-per-buck). The maximum utility can be obtained by
purchasing only those goods which gives the maximum utility per unit of money
(or maximum bang-per-buck (MBB)). Furthermore, if there are two goods j and
j′ which are MBB goods for buyer i, then i is indifferent in both these goods
because both goods gives the same utility per unit of money.

From these observations, we can conclude that the optimal bundle xi of
agent i must consists of only MBB goods, i.e.,

xij > 0⇒ Uij
pj

= max
k∈G

Uik
pk

,∀j ∈ G.

Let’s capture the inverse of maximum bang-per-buck in a variable λi. Then the
optimal bundle constraint is:

xij > 0⇒ Uij
pj

= max
k∈G

Uik
pk

=
1

λi
,∀j ∈ G.

This gives us the following complementarity constraints that capture the optimal
bundles for each buyer i:

xij ≥ 0 ⊥ Uij

pj
≤ 1

λi
, ∀i ∈ A, j ∈ G ,

which is after simplifying

xij ≥ 0 ⊥ Uijλi ≤ pj , ∀i ∈ A, j ∈ G . (14)

Next, let’s capture the market clearing constraints, i.e.,∑
j∈G xijpj =

∑
jWijpj , ∀i ∈ A∑

i∈A xij =
∑
iWij = 1, ∀j ∈ G . (15)

(14) and (15), together, characterize market equilibria of a linear exchange
market provided that p > 0.

pj > 0, ∀j ∈ G . (16)

The proof of the following lemma easily follows from the above discussion.

Lemma 5.4. (p, x) is a market equilibrium of a linear exchange market if and
only if they are solution of (14), (15) and (16).

5.2.2 LCP Formulation

In this section, we derive a LCP formulation for the linear exchange markets.
Lemma 5.4 states that (14), (15) and (16) captures the set of equilibria however
these constraints don’t define an LCP because (i) the first constraint of (15) is
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not even linear, (ii) all variables don’t have complementarity constraints, and
(iii) the (16) is a strict inequality. Next, we fix all these issues. For the first, let
us replace xij by fij/pj where fij denotes the money spent by agent i on good
j. Note that given fij ’s and pj ’s, we can easily get xij . We get the following:

fij ≥ 0 ⊥ Uijλi ≤ pj , ∀i ∈ A, j ∈ G∑
i∈A fij = pj , ∀j ∈ G∑

j∈G fij =
∑
jWijpj , ∀i ∈ A

pj > 0, ∀j ∈ G

. (17)

Now, we replace the second and third constraints of (17) as −
∑
j∈G fij ≤

−
∑
jWijpj and

∑
i fij ≤ pj . Note that if we sum these two constraints for all

i and all j respectively, then we get∑
j

pj =
∑
j

pj
∑
i

Wij =
∑
i,j

Wijpj ≤
∑
i,j

fij ≤
∑
j

pj ,

which implies that all inequalities must be strict. And hence these inequal-
ities are equivalent to the equalities. We can further have complementarity
constraints with these inequalities which are essentially redundant, and we get

fij ≥ 0 ⊥ Uijλi ≤ pj , ∀i ∈ A, j ∈ G
pj ≥ 0 ⊥

∑
i∈A fij ≤ pj , ∀j ∈ G

λi ≥ 0 ⊥ −
∑
j∈G fij ≤ −

∑
jWijpj , ∀i ∈ A

pj > 0, ∀j ∈ G

. (18)

Finally, to take care of the last issue of the last inequality being strict, recall
Claim 5.3 that if p are equilibrium prices then so are αp,∀α > 0, we replace
pj = p′j + 1, i.e., we enforce that each pj ≥ 1. That takes care of the strict
inequality. Finally, we get

fij ≥ 0 ⊥ Uijλi ≤ p′j + 1, ∀i ∈ A, j ∈ G
p′j ≥ 0 ⊥

∑
i∈A fij ≤ p′j + 1, ∀j ∈ G

λi ≥ 0 ⊥ −
∑
j∈G fij ≤ −

∑
jWij(p

′
j + 1), ∀i ∈ A

. (19)

The following theorem is straightforward based on the above construction:

Theorem 5.5. Every market equilibrium of a linear exchange market is a so-
lution of the (19) and vice-versa, up to scaling.

The LCP in (19) is in a standard form, however there is no starting solution
to start with. So to apply Lemke’s algorithm, we need to add an auxiliary
dimension z, and for that we only add z to the third constraint which not only
gives us a starting solution of the modified LCP but also there is a economic
meaning of z which is the surplus of agent i (i.e., earning - spending). So, we
apply the Lemke’s algorithm on the following LCP:
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fij ≥ 0 ⊥ Uijλi ≤ p′j + 1, ∀i ∈ A, j ∈ G
p′j ≥ 0 ⊥

∑
i∈A fij ≤ p′j + 1, ∀j ∈ G

λi ≥ 0 ⊥ −
∑
j∈G fij − z ≤ −

∑
jWij(p

′
j + 1), ∀i ∈ A

z ≥ 0

. (20)

Note that we are interested in finding a solution of (20) with z = 0. Let
y = (λ, p′, f) and if we set y = 0 in (20) then we get an infinite edge which has
one endpoint (y = 0, z = ∞) and other where (y = 0, z = maxi

∑
jWij). We

now apply the Lemke’s algorithm starting with the primary ray and Comple-
mentarity pivoting (see Section 4.1 for Lemke’s algorithm). It can be shown that
there are no secondary rays in (20), which will imply that Lemke’s algorithm
will converge to a market equilibrium. For the proof, we refer to [11, 13].

5.3 Convex Programs

In last section, we obtained an LCP formulation and a complementary pivot
algorithm (using Lemke’s algorithm) for computing a market equilibrium. Even
though this algorithm runs very fast in practice, the worst case complexity may
be exponential (like in the case of Simplex algorithm for the linear program-
ming). In this section, we discuss convex programming based techniques which
are used to design provably efficient algorithms for computing equilibria in linear
markets.

For linear Fisher markets, the following Eisenberg-Gale (EG) convex pro-
gram [12] captures equilibria:

max
∑
i∈A

Mi log
∑
j∈G

Uijxij∑
i∈A

xij ≤ 1, ∀j ∈ G

xij ≥ 0, ∀i ∈ A, j ∈ G

,

where prices pj ’s are dual variables of the first constraint. The Karush-
Kuhn-Tucker (KKT) conditions that are satisfied at an optimal solution of the
convex program are as follows, where pj and αij are dual variables of the two
constraints respectively:

MiUij∑
k Uikxik

= pj + αij , ∀i, j

xijαij = 0, ∀i, j

pj(
∑
i

xij − 1) = 0, ∀j

These together with the primal constraints, we get that the optimal solution
of EG convex program satisfies the following:
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MiUij∑
k Uikxik

≤ pj ⊥ xij ≥ 0, ∀i, j∑
i xij ≤ 1 ⊥ pj ≥ 0, ∀j

Rearranging the first constraint we get

Uij

pj
≤

∑
k Uikxik

Mi
⊥ xij ≥ 0, ∀i, j∑

i xij ≤ 1 ⊥ pj ≥ 0, ∀j

Note that the right hand side of the first constraint is independent of good
j, and hence it implies that whenever xij > 0 we have Uij/pj = maxl Uil/pl.
This implies that at an optimal solution of the EG convex program, each agent
receives an optimal bundle. Next, the first constraint also implies that (using
complementarity and multiplying by xij on both sides)

UijxijMi = xijpj
∑
k

Uikxik, ∀i, j.

If we sum the above for all j, then we get

Mi =
∑
j

xijpj ,

which implies that at an optimal solution of the EG convex program, each agent
gets an optimal bundle that is within its budget. Finally,

∑
i xij ≤ 1 constraint

implies that no good is oversold. These together implies that optimal solution
of the EG convex program gives a Fisher market equilibrium and vice-versa.

There is another convex program given by Shmyrev [17] which also captures
Fisher market equilibria at its optimal solution (which is in fact a dual of the
EG convex program):

min
∑
j∈G

pj log pj−
∑

ij:Uij>0

fij logUij∑
i:Uij>0

fij = pj ∀j ∈ G

∑
j:Uij>0

fij = Bi ∀i ∈ A

fij ≥ 0, pj ≥ 0 ∀i ∈ A, j ∈ G

The Shmyrev convex program can be interpreted as a min cost network flow
problem as shown in Figure 1.

An equilibrium in a linear Fisher market can be computed in O(n4 log n)
time where n is the total number of buyers and goods [16, 18].

For the linear exchange markets, it can be assumed without loss of generality
that each agent i brings a unit amount of good i. For that, [9] gave the following

22



demand

𝑡𝑡

−𝐵𝐵𝑗𝑗

⋮

⋮

⋮

log𝑈𝑈𝑖𝑖𝑖𝑖′
−𝐵𝐵𝑖𝑖

−𝐵𝐵1

𝑗𝑗

𝑖𝑖

1

⋮

𝑗𝑗

𝑖𝑖

1

⋮

⋮

𝑝𝑝𝑖𝑖 log𝑝𝑝𝑖𝑖
∑𝑖𝑖∈𝐴𝐴 𝐵𝐵𝑖𝑖

linear cost convex cost𝐴𝐴 𝐺𝐺

Figure 1: Network flow interpretation of Shmyrev’s convex program

convex program:

min
∑
i∈A

pi log
pi
βi
−

∑
ij:Uij>0

fij logUij∑
i:Uij>0

fij = pj , ∀j ∈ G

∑
j:Uij>0

fij = pi, ∀i ∈ A

Uijβi ≤ pj , ∀i ∈ A, j ∈ G
fij ≥ 0, βi ≥ 0, pj ≥ 1, ∀i ∈ A, j ∈ G

An equilibrium in a linear exchange market can be computed in polynomial
time, and the fastest algorithm is given by [10].

5.4 Welfare Theorems

Given a linear exchange market M, let p = (pj)j∈G, x = (x1, . . . , xn) be an
equilibrium, where pj is the price of good j and xi is the allocation to agent i.
Let X denote the set of feasible allocation, i.e.,

X = {(x1, . . . , xn) |
∑
i

xij ≤ 1}.
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Clearly, x ∈ X. Consider another feasible allocation x′ = (x′1, . . . , x
′
n). Then,

agent i either prefers xi to x′i or it prefers x′i to xi. In the former case, equilib-
rium allocation is better and in the latter case equilibrium allocation is worse.
Observe that in the latter case x′i.p > xi.p (where xi.p =

∑
j xijpj) because

market equilibrium gives an optimal bundle to each agent subject to budget
constraints and hence the bundle x′i was not affordable (or within the budget
of agent i).

Definition 5.6 (Pareto Efficiency). A feasible allocation x ∈ X is said to be
Pareto efficient (or just efficient) if there is no feasible allocation x′ ∈ X such
that x′i ≥ xi,∀i and it is a strict inequality for at least one agent i.

Theorem 5.7 (First Welfare Theorem). Market equilibrium allocations are ef-
ficient.

Proof. By contradiction. Let (p, x) be a market equilibrium and there exists x′

such that each agent i is either indifferent between xi and x′i or prefers x′i to xi,
and there is at least one agent i who prefers x′i to xi. In that case, we have∑

j

pj =
∑
i

x′i.p >
∑
i

xi.p =
∑
j

pj ,

which is a contradiction.

Theorem 5.8 (Second Welfare Theorem). Every Pareto efficient allocation can
be obtained as a market equilibrium.

Proof. Let x be an efficient allocation (in a market with respect to the prefer-
ences of the agents). If we consider each agent i endowment Wi to be same as
xi, then we claim that x is an equilibrium allocation in this market. Suppose
not and let x′ is an equilibrium of such a market. In that case, since x 6= x′

and x is efficient, there exists some agent i who prefers xi to x′i. But since xi
is the endowment of agent i, it should get a bundle that is at least as better as
xi, which is a contradiction.

5.5 Applications

5.5.1 Fair Division

In fair division, the problem is divide a given a set of items (or goods) into a
set of agents in a fair way. One notion of fairness is an allocation that is Pareto
efficient and envy-free.

Definition 5.9 (Envy-free). An allocation x = (x1, . . . , xn) is said to be envy-
free if no agent i prefers xj to xi for some j 6= i.

Note that this is not a market problem. But, suppose all goods are divisible
(i.e., they can be fractionally divided, e.g., milk, cake, etc.) then if we convert
this problem into a market problem where each agent has $1 (equal income)
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and their utility function is same as the preference function in the fair division
problem. Then we claim that such an allocation is envy-free and efficient and
hence fair.

Lemma 5.10 (Competitive equilibrium with equal income). Market equilibrium
gives a fair allocation.

Proof. We need to show that market equilibrium allocation x = (x1, . . . , xn) is
efficient and envy-free. The efficiency is shown in Theorem 5.7. For the envy-
freeness, since each agent i has $1 each and they get an optimal (i.e., utility
maximizing) bundle at an equilibrium. Hence, xj ,∀j is within budget for each
agent i and hence xj is not preferred to xi by each agent i, otherwise i is not
obtaining an optimal bundle, which is a contradiction.

The above lemma shows that in case of divisible goods, fair division problem
is exactly equal to market equilibrium where each agent has equal income.

In case of indivisible items, the fair division problem turns out to be infeasi-
ble. Consider an example where there are two agents and two goods, one good
is preferable to other good by both agents, say a diamond and a petty stone.
Clearly, there is no way these two goods can be divided between two agents so
that the allocation is envy-free, i.e., whoever gets the stone will envy other.

We need to relax this notion to make some sense. Budish [5] showed that if
we consider envy-free upto the removal of one item (or in short EF1), i.e., can
there exist an allocation in any fair division problem where each agent i prefers
(or indifferent) its own bundle xi to the agent j’s bundle minus one item (i.e.,
after removing one item from xj) for each j. If this is true for each i, then we
say that this allocation is EF1.

Nash social welfare. Another notion of fairness in case of indivisible items
is Nash social welfare (NSW) which allocates so that the geometric mean of
valuations is maximized, i.e.,

max
x∈X

(
∏
i

vi(xi))
1/n,

where X is the set of all feasible allocation and vi is the valuation function of
agent i. Let Uij is the value of item j to agent i. In case of additive valuations
(or linear), vi(xi) =

∑
j Uijxij . So the NSW problem is the following integral

convex program:

max(
∏
i

∑
j Uijxij)

1/n∑
i xij ≤ 1, ∀j

xij ∈ {0, 1}, ∀i, j
, (21)

which is same as

max
∑
i log

∑
j Uijxij∑

i xij ≤ 1, ∀j
xij ∈ {0, 1}, ∀i, j

, (22)
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If we relax the integrality constraint in the above program then observe that
it is same as the Eisenberg-Gale convex program where Mi = 1,∀i. The NSW
problem is NP-hard, and one way to design a good approximation algorithm (say
obtain an allocation efficiently (in polynomial time) which is at least one half of
the optimum) is to relax the integrality constraint and then round the fractional
solution. This approach directly doesn’t work but with some additional mod-
ification in the Fisher market equilibrium problem, it gives a 2-approximation
algorithm; see [7, 6, 3] for details).

5.5.2 Proportional Response Dynamics

In P2P network (for file sharing etc., e.g., in BitTorrent) each node shares
its upload bandwidth in the proportion of the bandwidth it receives from its
neighbors. Let wi denote the upload bandwidth of node i, Γ(i) denote the
neighbors of node i, and xij(t) denote the fraction of upload bandwidth of node
j allocated to node i at time t. Then, the allocation at time t+ 1 is:

xij(t+ 1) =
xji(t)wi∑

k∈Γ(j) xjk(t)wk
.

This dynamics is called proportional response, and the question here is
whether this dynamics converges and if yes, then to what allocation it con-
verges to.

Wu and Zhang [20] showed that it converges to market equilibrium of the
following linear exchange market, where each node i is an agent i and it brings
wi amount of good i. Its utility from a bundle xi is

∑
j∈Γ(i) wjxij . This is

remarkable because we can easily find the steady allocation of the proportional
response dynamics from equilibrium of the linear exchange market.

5.6 Tatonnement

Tatonnement is a dynamics given by Leon Walras in 1874 [19] in order to
explain how market converges to an equilibrium. There is an auctioneer who
has all the goods. It initializes the prices of all goods to some value (say all
1). And at these prices, it obtains the total demand of each good. If demand
is equal to supply of each good, then trade happens at these prices (which are
in fact equilibrium prices). Otherwise, trade doesn’t happen and the prices of
those goods whose demand is more than supply are increased and the prices of
those goods whose demand is less than supply are decreased. Then, the process
repeats.

It is clear that such a process (or dynamics) will converge to an equilibrium.
However, the question is whether this will eventually converge or not in every
market. It turns out that this may not converge in all markets, but if the market
satisfies the gross substitute condition, then it converges in those markets.

Definition 5.11 (Gross Substitute). A market is said to satisfy the gross sub-
stitute condition if when prices are increased for a subset S ⊂ G of goods, then
the demand of goods whose prices are not increased (i.e., in G \ S increases.
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